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The intent of these notes is to facilitate going through the first part of the book “Fourier
Analysis on Finite Groups and Applications” by Audrey Terras. Please read with caution and be
aware of typos as they are unedited.

1 Toolbox

This section will be roughly based on chapter one of the book. We will review the necessary
machinery from modular arithmetic, and then give some motivation by drawing connections with
analysis. Since we will be dealing almost exclusively with finite abelian groups, unless otherwise
stated, any group will be finite and abelian.

Let Z be the ring of whole numbers. For any natural number n ∈ N, denote Zn ∶= Z/nZ. That
is, elements of Zn are equivalence classes a ∶= {b ∈ Z ∣ n∣(b − a)}. Two representatives of the same
equivalence class are called congruent (modulo n), and in this case we will write a ≡ bmodn. Then
Zn = {a ∣ 0 ≤ a < n} is again a ring with multiplication and addition given by

a + b ∶= a + b and a ⋅ b ∶= a ⋅ b. (1.1)

We will refer to the ring Zn as the finite circle. Convince yourself that this is an appropriate name.
Throughout we will pay special attention to the finite circle for two major reasons. The first one is
that every cyclic group of order n is isomorphic with the additive group of Zn. The second reason
is the following.

Theorem 1.1 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group is the
direct product of some finite circles.

We will denote Z∗n the group of units of Zn, that is,

Z∗n ∶= {a ∈ Zn ∣ ∃ b ∈ Zn such that a ⋅ b = 1}. (1.2)

Proposition 1.2. a ∈ Z∗n ⇐⇒ gcd(a,n) = 1.

Proof. By the very definition of the group of units, a ∈ Z∗n iff there exists b ∈ Zn such that a ⋅ b = 1.
The latter happens precisely when n∣(1−ab). In other words, precisely when there exists k ∈ Z such
that 1 = ab + kn. But this is just the Bézout’s Identity1 for a and n. Thus gcd(a,n) = 1.

Theorem 1.3. Zn is a field iff n is prime.

Proof. Since Zn is a field, every nonzero element has a multiplicative inverse. That is Z∗n = Zn−{0}.
Thus for all 1 ≤ a < n, by Proposition 1.2 we have gcd(a,n) = 1. This implies that n is prime. Now
note that all the implications in the proof of the forward direction are actually equivalences.

Remark 1.4. Let p be a prime. Then Zp is a field by Theorem 1.3. In particular this implies that
Zp is a domain2. However this can also be seen directly as follows. Assume a ⋅ b = a ⋅ b = 0. Thus
p∣ab. Since p is prime it follows that p∣a or p∣b. Thus a = 0 or b = 0.

A Sweet Little Trick 1.5. Many things get simplified a lot in a finite world. One of the reasons
is Exercise 1.20. Let’s see Exercise 1.20 in action. Let R be a finite commutative ring, which in
addition is also a domain. Fix 0 ≠ a ∈ R. Define the map ma ∶ R Ð→ R, xz→ ax. Note first that ma

is injective. Indeed ma(x) =ma(y) iff a(x− y) = 0. Since R is a domain and a ≠ 0 we may conclude
x = y. But then ma is also surjective. Thus, for 1 ∈ R, there exists b ∈ R such that ab = ma(b) = 1.
In other words, every nonzero element is a unit and thus R is a field.

1Bézout’s Identity: gcd(a, b) = d ⇐⇒ ∃r, s ∈ Z such that d = ra + sb.
2a ⋅ b = 0 Ô⇒ a = 0 or b = 0.
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Theorem 1.6 (Chinese Reminder Theorem). Let n,m ∈ N be two natural numbers such that
gcd(n,m) = 1. Then Zn ×Zm ≅ Znm

Proof. See Dummit and Foote, along with the observation3 that gcd(n,m) = 1 iff the ideals nZ and
mZ are comaximal.

Definition 1.7. The map φ ∶ ZÐ→ Z given by

φ(n) ∶= ∣{a ∣ 1 ≤ a ≤ n − 1 and gcd(a,n) = 1}∣
= ∣Z∗n∣ (By Proposition 1.2)

is called Euler’s function.

A useful tool for computing Euler’s function is the following.

Theorem 1.8. Euler’s function is multiplicative. That is φ(nm) = φ(n)φ(m) for all n,m ∈ N such
that gcd(n,m) = 1.

Proof. One can prove the statement using elementary counting arguments. However, this is an
immediate consequence of the definition and Theorem 1.6.

Example 1.9. By the very definition of φ we have φ(n) = n − 1 iff n is prime; compare this with
Theorem 1.3. Convince yourself that for any prime power we have

φ(pk) = pk − pk−1 = pk (1 − 1

p
) . (1.3)

Let n = pk11 ⋯pkrr be written in its prime decomposition. Then gcd(pkii , p
kj
j ) = 1 for all i ≠ j, and

thus by Theorem 1.8 we have

φ(n) = φ(pk11 )⋯φ(pkrr ) = n
r

∏
i=1

(1 − 1

pi
) . (1.4)

The latter is called Euler’s product formula.

Exercise 1.10. Show that Euler’s function satisfies

∑
d∣n
φ(d) =∑

d∣n
φ(n

d
) , (1.5)

and then use (1.5) to show that ∑d∣n φ(d) = n.

Example 1.11 (Public Key Cryptography). In here we will describe the RSA4 cryptosystem.
Think of your to be sent message as a number m. Assume p ≠ q are primes, and fix t such that
gcd(t, φ(pq)) = 1 (where φ is Euler’s function). The encryption of the message m is mt(modpq).
Typically neither p nor q divide m. The pair (t, pq) is known to the entire world and that is why
the name “public”. So how can we recover m from mt(modpq)? That is, we are looking for s such
that

mts ≡m(modpq). (1.6)

3This follows easily from the Bézout Identity.
4RSA is the acronym for Rivest−Shamir−Adleman.
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By making use of Exercise 1.21 it is not difficult to see that it suffices to find s such that

ts ≡ 1(modφ(pq)), (1.7)

By making use of Exercise 1.21 once again, it suffices that s satisfies

s ≡ tφ(φ(pq))−1(modφ(pq)). (1.8)

So in oder to compute s one must have in hand (other than the publicly know t) φ(pq) = (p−1)(q−1)
which practically impossible due to the difficulty of prime factorization. Knowing the product of
two large primes doesn’t say anything about the primes, and thus, knowing pq is harmless (as one
must know p and q for the decryption).

Definition 1.12. The Möbius function is defined as

µ(n) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if n is the product of an even number of distinct primes,
−1, if n is the product of an odd number of distinct primes,
0, otherwise.

Let n = pk11 ⋯pkrr be written in its prime decomposition. It follows directly by the definition that
µ(n) = 0 iff there exists i such that ki > 1.

Theorem 1.13.

∑
d∣n
µ(d) = { 1, if n=1,

0, otherwise.

Proof. Let n = pk11 ⋯pkrr be written in its prime decomposition. Then

∑
d∣n
µ(d) =

r

∑
i=0

(r
i
)(−1)i = (1 − 1)r = 0.

By making use of Theorem 1.13 we can relate Euler’s and Möbius functions as follows. First,
convince yourself of the following identity:

r

∏
i=1

(1 − 1

pi
) = 1 −

r

∑
i=1

1

pi
+ ∑

1≤i<j≤r

1

pipj
−⋯ (1.9)

Now combine (1.4) and (1.9), and apply Theorem 1.13 to obtain

φ(n)
n

=∑
d∣n

µ(d)
d

. (1.10)

Note that the right-hand-side of (1.10) gives the proportion of numbers smaller than n that are
relatively prime with n, and has vast applications to number theory (especially with regards to the
distributions of primes).

Theorem 1.14 (Möbius Inversion Formula). Let f and g be two functions defined for every natural
number and assume that they satisfy f(n) = ∑d∣n g(d). Then g satisfies

g(n) =∑
d∣n
µ(d)f (n

d
) . (1.11)
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Proof.

∑
d∣n
µ(d)f (n

d
) =∑

d∣n
µ(n

d
) f(d) =∑

d∣n
µ(n

d
)∑
d′∣d

g(d′)

= ∑
d′∣n

g(d′) ∑
m∣(n/d′)

µ(m)

= g(n),

since by Theorem 1.13 we have

∑
m∣(n/d′)

µ(m) = { 1, if d′ = n,
0, otherwise.

Definition 1.15. Let f and g be defined for any natural number. The convolution f ∗ g is defined
by

(f ∗ g)(n) =∑
d∣n
f(d)g (n

d
) = ∑

ab=n
f(a)g(b). (1.12)

Exercise 1.16. Show that the convolution is commutative and associative. Make use of associa-
tivity to deduce the Möbius Inversion Formula.

We now return to the study of Zn (although, technically, we never left it). Let Fq be the5 finite
field with q elements. Then q = pk is a prime power. We know that the group of units F∗q is cyclic,
and thus, so is Z∗p for every prime p (and of course it has order p−1). Assume Z∗n is cyclic and write
Z∗n = ⟨a⟩ for some a ∈ Zn. Such a is called a primitive root, and by definition it has multiplicative
order ord(a) = ∣Z∗n∣ = φ(n). We have

ord(ak) = ord(a) ⇐⇒ gcd(k,n) = 1. (1.13)

The cyclicity of Z∗n is determined by the following. See Theorem 5, page 25 from the book.

Theorem 1.17. Z∗n is cyclic iff n ∈ {2,4, pk,2pk ∣ p is odd prime and k ≥ 1}.

Back to finite fields. For 1 ≤ ` ≤ k, Fp` is a vector space of dimension ` over Fp. Yet Fp` ⊆ Fpk
is a subfield iff `∣k. Next, Fp is called the prime field of Fp` . The group of automorphisms of
Fp` , denoted Aut(Fp`) (or Gal(Fp` ∣Fp) if you have seen Galois theory), is a cyclic group of order `
generated by the Frobenius automorphism x z→ xp. It follows from this, and you should convince
yourself (again, if you have seen Galois theory it should be trivial), that Fp = {x ∈ Fp` ∣ xp = x}.
The trace of x ∈ Fpk over Fp is given by

tr(x) ∶=
k−1

∑
i=0

xp
i

. (1.14)

Convince yourself that tr(x) ∈ Fp for all x ∈ Fpk . Using the Frobenius automorphism it follows
easily that the trace is Fp linear. Convince yourself that tr(x) = tr(xp) for all x ∈ Fpk , and as a
consequence, for all y ∈ Fp

∣tr−1(y)∣ = ∣{x ∈ Fpk ∣ tr(x) = y}∣ = pk−1. (1.15)

In particular tr ∶ Fpk Ð→ Fp is surjective. What other Fp-linear maps Fpk Ð→ Fp do we have? For
all x ∈ Fpk consider the map Φx ∶ Fpk Ð→ Fp, a z→ tr(ax). Since the trace is Fp-linear so is Φx.
Convince yourself that x ≠ x′ implies Φx ≠ Φx′ .

5Recall that up to isomorphism there is a unique finite field with q elements.
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Exercise 1.18. Show that {Φx ∣ x ∈ Fpk} is the set of all Fp-linear maps Fpk Ð→ Fp. Next, denote
this set with Hom(Fpk ,Fp). Show that, moreover, Hom(Fpk ,Fp) ≅ Fpk as Fp-vector spaces.

The norm of x ∈ Fpk over Fp is given by

N(x) ∶=
k−1

∏
i=0

xp
i

= x(p
k−1)/(p−1). (1.16)

As for the trace, we have N(x) ∈ Fp for all x ∈ Fpk and N ∶ Fpk Ð→ Fp is surjective. In contrast, with
the trace, however, the norm is multiplicative, that is, N(xy) = N(x)N(y) for all x, y ∈ Fpk . We will

denote Ξk ∶= {x ∈ Fpk ∣ N(x) = 1}. Since the norm is surjective we have ∣Ξk∣ = (pk − 1)(p − 1) =∶ dk.
Now it is time to connect all the above with notions from real analysis and what is known

as (classical) Fourier analysis. Definition 1.15 should sound familiar with convolution from real
analysis. That is, the convolution f ∗ g of two reasonably nice functions f and g is defined as

(f ∗ g)(x) ∶= ∫
R
f(x)g(x − y)dy (1.17)

Then one also defines the Fourier transform of a function f to be

(Ff)(x) ∶= ∫
R
f(y)e−2πixydy. (1.18)

Then the Fourier Inversion Theorem guaranties

f(y) = ∫
R
(Ff)(x)e−2πixydx = ∫

R
∫
R
e2πi(x−z)yf(z)dz dx. (1.19)

If f, g ∶ RÐ→ C are two reasonably nice functions, one defines the Hermitian inner product as

⟨ f ∣ g ⟩ ∶= ∫
R
f(x)g(x)dx, (1.20)

where ● now is the complex conjugate. Then the norm of f is given by

∥f∥ ∶= ⟨ f ∣ f ⟩
1
2 = (∫

R
∣f(x)∣2dx)

1
2

. (1.21)

Convince yourself that
∥Ff∥ = ⟨Ff ∣Fg ⟩ = ⟨ f ∣ g ⟩ = ∥f∥, (1.22)

that is, the Fourier transform is an isometry. There is an extremely nice connection between the
Fourier transform and convolution. Namely, Fourier transform transforms convolution to point-wise
multiplication:

(F(f ∗ g))(x) = (Ff)(x)(Fg)(x). (1.23)

Now, although historically the Fourier transform has been denoted with F , the beauty of (1.23) is
obscured by the heavy-looking notation. So from now on, we will denote the Fourier transform of
f by f̂ .

If we want to be all technical, we have been secretly working with the Hilbert space L2(R) of
all square integrable complex valued functions. Hopefully by now it should be clear the connection
between the discrete convolution and continuous convolution. What is missing for a complete
picture is the notion of a discrete Fourier transform. The idea is to jump from L2(R) to the space

L2(G) ∶= {f ∶ GÐ→ C}, (1.24)

attached to any given finite abelian group G. Note that we are putting no restrictions on the maps
f .
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Exercise 1.19. Show that Aut(Zn) ≅ Z∗n.

Exercise 1.20. Let A and B be two sets of the same cardinality. Show that f ∶ AÐ→ B is injective
iff it is surjective.

Exercise 1.21. Let n,m ∈ N be such that gcd(n,m) = 1. Show that nφ(m) ≡ 1 modm, and use this
to show that nφ(m) +mφ(n) ≡ 1 modnm.

Exercise 1.22 (Fermat’s Little Theorem). Let p be a prime. Show that if a is not divisible by p
then ap−1 ≡ 1 modp.

Exercise 1.23. [Wilson’s Theorem] Show that for any prime number p we have (p−1)! ≡ −1 modp.

2 Characters of a Finite Abelian Group

Let G be a finite abelian group of order n, written additively. A character is a homomorphism
from G to the multiplicative group of complex numbers (C∗, ⋅). We will denote Ĝ the set of
all characters of G. Note that Ĝ ⊂ L2(G). If χ ∈ Ĝ is a character then for all g ∈ G we have
1 = χ(0) = χ(ng) = χ(g)n. Thus all the character’s values are roots of unity. So we can restrict the
codomain to S1 ∶= {z ∈ C ∣ ∣z∣ = 1}. In Ĝ we define addition as

(χ + ψ)(g) ∶= χ(g)ψ(g) for all χ,ψ ∈ Ĝ, g ∈ G. (2.1)

Convince yourself that (2.1) turns Ĝ to an abelian group. We will refer to Ĝ as the character group.
The zero of Ĝ is the principal character εG given by εG(g) ∶= 1 for all g ∈ G and the inverse of χ is
given by (−χ)(g) ∶= χ(−g) = χ(g) (where ● is the complex conjugate).

Theorem 2.1. (1) Ẑn ≅ Zn.

(2) Ĝ1 ×G2 ≅ Ĝ1 × Ĝ2.
As a consequence of the Fundamental Theorem of Finite Abelian Groups we have Ĝ ≅ G for any
finite abelian group.

Proof. (1) Note that it suffices to show that Ẑn is a cyclic group of order n. To that end, fix
ω ∶= e2πi/n. Then for 0 ≤ j < n define χj ∶ Zn Ð→ C∗, a z→ ωja. Convince yourself that χj is a
character (that is, χj is well-defined and homomorphism). Thus {χj ∣ 0 ≤ j < n} ⊆ Ẑn. We show
next the reverse inclusion. Let χ ∈ Ẑn. Since ω is a primitive root of unity there exists j such that
χ(1) = ωj . It follows that χ(a) = ωja = χj(a). Thus Ẑn = {χj ∣ 0 ≤ j < n} = ⟨χ1⟩.
(2) It is straightforward to show that the map

Φ ∶Ĝ1 × Ĝ2 Ð→ Ĝ1 ×G2, (χ1, χ2)z→ { G1 ×G2 Ð→ C∗

(g1, g2) z→ χ1(g1)χ2(g2)
(2.2)

is a homomorphism. We show next that Φ is injective by showing that ker Φ = {(εG1 , εG2)}. Assume
Φ(χ1, χ2)(g1, g2) = χ1(g1)χ2(g2) = 1 for all (g1, g2) ∈ G1×G2. By using pairs of form (x,0) ∈ G1×G2

we may conclude χ1 = εG1 . Similarly, χ2 = εG2 . Next, let χ ∈ Ĝ1 ×G2. Then χ = Φ(χ1, χ2) where
χ1(x) ∶= χ(x,0) and χ2(y) = χ(0, y).

Remark 2.2. Consider the finite field with pn elements Fpn . We know that Fpn ≅ Fnp as Fp-vector

spaces, and of course Fp = Zp. Thus, by Theorem 2.1 we have F̂pn ≅ Ẑp × ⋯ × Ẑp. In other words,
we pretty much know F̂pn ; see also Remark 2.4 if necessary. However, later on we will need an
explicit description of the characters of Fpn . Let ω ∶= e2πi/p be a pth root of unity and recall the
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trace function from (1.14). We claim that F̂pn = {χx ∣ x ∈ Fpn}, where χx(y) ∶= ωtr(xy). To prove
the claim it is sufficient (due to cardinality reasons) to show that χx = χx′ implies x = x′. To this

end, assume χx(y) = χx′(y) for all y ∈ Fpn . This implies ωtr((x−x′)y) = 1 for all y ∈ Fpn , which in
turn implies tr((x−x′)y) = 0 for all y ∈ Fpn . Now make use of Exercise 1.18 to show that the latter
implies x − x′ = 0.

Example 2.3 (Dirichlet characters). Theorem 2.1 gives the characters of the finite abelian group
(Zn,+). But (Z∗n, ⋅) is as well a finite abelian group. Fix a character χ̃ ∈ Ẑ∗n, and consider
χ ∶ ZÐ→ C∗ given by

χ(a) = { χ̃(a), if gcd(a,n) = 1,
0, else.

Such a map is called Dirichlet character and were used by Dirichlet to show that there are infinitely
many primes congruent to any number n. It is easy to see that a Dirichlet character is strongly
multiplicative, that is χ(nm) = χ(n)χ(m) for all n,m ∈ Z. Then the Dirichlet L-function is defined

L(s,χ) =
∞
∑
n=1

χ(n)
ns

(2.3)

for any s ∈ C. Note that the Dirichlet L-function associated to the trivial Dirichlet character ε
is the Riemann ζ-function: L(s, ε) = ζ(s) = ∑∞

n=1 n
−s. As such, L-functions play central role in

analytical number theory. In fact one can associate a L-function to any strongly multiplicative
map f ∶ ZÐ→ C by

L(s, f) =
∞
∑
n=1

f(n)
ns

. (2.4)

For complex number s ∈ C such that Re(s) > 1 the right-hand-side of (2.3) converges and admits
the Euler product formula

L(s,χ) =∏
p

⎛
⎝

∞
∑
j=1

χ(pj)p−js
⎞
⎠
=∏

p

1

1 − χ(p)ps
.

Remark 2.4. Inducting on Theorem 2.1(2) we obtain Ĝk ≅ Ĝk, where Gk = G ×⋯ ×G. Similarly,
the isomorphism is given by

χ(g) ∶=
k

∏
i=1

χi(gi), (2.5)

for all χ = (χ1, . . . , χk) ∈ Ĝk, g = (g1,⋯, gk) ∈ Gk. Now consider Zn. In Theorem 2.1(1) we saw how
the characters of Zn look like. Fix a = (a1, . . . , ak) and χ = (χi1 , . . . , χik). Recall that χik(x) = ωikx.
Thus, applying (2.5) to this specific case we obtain

χ(a) =
k

∏
j=1

χij(aj) =
k

∏
j=1

ωijaj = ωi⋅a, (2.6)

where i ⋅ a ∶= ∑kj=1 ijaj is the standard dot product modulo n.

Definition 2.5. Let H ≤ G and K ≤ Ĝ be two subgroups. Then

(1) H⊥ ∶= {χ ∈ Ĝ ∣ χ∣H = εH} = {χ ∈ Ĝ ∣ χ(h) = 1 for all h ∈H}.
(2) K⊥ ∶= {g ∈ G ∣ χ(g) = 1 for all χ ∈K}.
H⊥ and K⊥ are called the dual groups of H and K respectively.
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Since a character is a group homomorphism we have kerχ ∶= {g ∈ G ∣ χ(g) = 1} is a subgroup of
G. With this notation we have

K⊥ = ⋂
χ∈K

kerχ. (2.7)

Theorem 2.6. The map

Φ ∶H⊥ z→ Ĝ/H, χz→ { Φχ ∶ G/H Ð→ C∗

g +H z→ χ(g) (2.8)

is an isomorphism of groups. As a consequence ∣H⊥∣ = ∣G∣/∣H ∣.

Proof. The only interesting part is to show that Φ is well-defined, that is, every χ ∈ H⊥ gives
a well-defined map Φχ. Indeed, if g − g′ ∈ H then since χ ∈ H⊥ we obtain χ(g) = χ(g′). Thus

Φχ(g +H) = Φχ(g′ +H). By Theorem 2.1 we have ∣H⊥∣ = ∣Ĝ/H ∣ = ∣G/H ∣ = ∣G∣/∣H ∣.

Theorem 2.7. Let H ≤ G be a subgroup. Then every character of H can be extended to a character
of G.

Proof. Define the map π ∶ ĜÐ→ Ĥ, χz→ χ∣H . Note first that it suffices to show that π is surjective.
Convince yourself that kerπ =H⊥. This yields

∣imπ∣ = ∣Ĝ∣/∣H⊥∣ = ∣H ∣ = ∣Ĥ ∣,

where the middle equality follows by Theorem 2.6. Thus imπ = Ĥ and as consequence π is surjective.

Theorem 2.8. Let f ∶ G Ð→ H be a surjective homomorphism of finite abelian groups. Then
the map f∗ ∶ Ĥ Ð→ Ĝ, χ z→ χ○f is an injective homomorphism such that f∗(Ĥ) = (ker f)⊥. In
particular, f is bijective iff f∗ is bijective.

Proof. Clearly f∗ is a homomorphism. We prove first that f∗ is injective. Let χ ∈ ker f∗. Then
χ○f = εG. We want to show that χ = εH . To that end, fix x ∈ H and write x = f(y) for some
y ∈ G (since f is surjective). Thus χ(x) = χ(f(y)) = 1. Next, we show f∗(Ĥ) ⊆ (ker f)⊥, that is,
χ(f(x)) = 1 for all χ ∈ Ĥ and x ∈ ker f . But the latter statement is clear. On the other hand, since
f is surjective, we have ∣ker f ∣ = ∣G∣/∣H ∣. By Theorem 2.7 we have ∣(ker f)⊥∣ = ∣G∣/∣ker f ∣ = ∣H ∣ =
∣Ĥ ∣ = ∣f∗(Ĥ)∣, where the last equality is due to injectivity of f∗.

Corollary 2.9. Let G be a finite abelian group and fix 0 ≠ g ∈ G. Then there exists χ ∈ Ĝ such that
χ(g) ≠ 1.

Proof. Let H ∶= G/⟨g⟩ and let π ∶ G Ð→ H be the canonical projection. Thus kerπ = ⟨g⟩. By
Theorem 2.8 we have

∣⟨g⟩⊥∣ = ∣G/⟨g⟩∣ < ∣G∣,

where the last inequality follows by g ≠ 0. But by the very definition we have ⟨g⟩⊥ = {χ ∈ Ĝ ∣ χ(g) =
1}. Thus there exists χ ∈ Ĝ such that χ(g) ≠ 1.

Example 2.10 (How to extend a character). Let H ≤ G be a proper subgroup and fix χ ∈ Ĥ.
Let 0 ≠ x ∈ G −H and let d be the smallest integers such that 0 ≠ dx ∈ H. Note that d ≠ 1 and
nx ∈ H iff d∣n. Fix z ∈ C∗ such that zd = χ(dx). Put K ∶= {nx + h ∣ h ∈ H} ⊋ H. Define χ̃ ∶ K Ð→
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C∗, nx + h z→ znχ(h). χ̃ is well-defined because if nx + h = mx + h′ then (n −m)x = h′ − h ∈ H.
Thus d∣(n −m). Write n = dk +m. By minimality of d we have kx = 0. Now we compute

χ̃(nx + h) = znχ̃(h) = zdk+mχ̃(h) = zmχ̃(kx)χ̃(h) = zmχ̃(h) = χ̃(mx + h)

χ̃ is clearly a group homomorphism and thus χ̃ ∈ K̂. If K = G we are done, otherwise repeat. The
process will clearly end because G is finite.

Exercise 2.11. Let H ≤ G. Show that every character of H extends to a character of G in ∣G∣/∣H ∣
different ways.

So far we have been studying the character group of a finite abelian group, which in turn is

itself a finite abelian group. So what about its character group ̂̂G? Let evg ∶ Ĝ Ð→ C∗, χ z→ χ(g)
be the evaluation map. Then

ζG ∶Gz→ ̂̂G, g z→ { evg ∶ Ĝ Ð→ C∗

χ z→ χ(g) , (2.9)

is an isomorphism6 of groups. Then (9) should be read as g(χ) = χ(g).

Theorem 2.12.

∑
χ∈Ĝ

χ(g) =
⎧⎪⎪⎨⎪⎪⎩

0, if g ≠ 0

∣G∣, if g = 0
and ∑

g∈G
χ(g) =

⎧⎪⎪⎨⎪⎪⎩

0, if χ ≠ εG,
∣G∣, if χ = εG.

(2.10)

Proof. We prove the second equation. The first equation follows by the second and (9). If χ = εG
then the equality is obvious. Now assume χ ≠ εG. Then there exists x ∈ G such that χ(x) ≠ 1.
Then

∑
g∈G

χ(g) = ∑
g∈G

χ(g + x) = χ(x)∑
g∈G

χ(g),

which in turn implies
(1 − χ(x))∑

g∈G
χ(g) = 0.

This concludes the proof.

Corollary 2.13 (Orthogonality Relations).

∑
g∈G

χ(g)ψ(g) =
⎧⎪⎪⎨⎪⎪⎩

∣G∣, if χ = ψ,
0, else.

and ∑
χ∈Ĝ

χ(x)χ(y) =
⎧⎪⎪⎨⎪⎪⎩

∣G∣, if x = y,
0, else.

Corollary 2.14. Let H ≤ G and K ≤ Ĝ. Then

∑
χ∈K

χ(g) =
⎧⎪⎪⎨⎪⎪⎩

∣K ∣, if g ∈K⊥,
0, else.

and ∑
h∈H

χ(h) =
⎧⎪⎪⎨⎪⎪⎩

∣H ∣, if χ ∈H⊥,
0, else.

(2.11)

Definition 2.15. Let G = {g0, . . . , gn−1} and Ĝ = {χ0, . . . , χn−1}. The Fourier matrix 7 of G is

FG = (χi(gj))
n−1

i,j=0
∈ Cn×n. (2.12)

6Note that ζG does not involve any choice, which makes it a natural isomorphism. Compare this with Theorem
2.1 where the isomorphism involves the choice of a primitive root of unity.

7Group theorists refer to CG as the character table.
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Proposition 2.16. The matrix A = 1√
n
FG is unitary.

Proof. Let A† the conjugate transpose of A. Then it is enough to show that A†A = I. Indeed

(A†A)i,j =
1

n

n−1

∑
l=0

χl(gi)χl(gj) =
1

n

n−1

∑
l=0

χl(gj − gi) = { 1, if i = j,
0, if i ≠ j.

Example 2.17. It is easy to see that the Fourier matrix of Z2 is

FZ2 = ( 1 1
1 −1

) .

The Fourier matrix of G = Z2 × Z2 is given below. The computation is done by using (2.6). Note
that FG = FZ2 ⊗ FZ2 .

FG =

(0,0) (0,1) (1,0) (1,1)
⎛
⎜⎜⎜
⎝

⎞
⎟⎟⎟
⎠

(χ0, χ0) 1 1 1 1
(χ0, χ1) 1 −1 1 −1
(χ1, χ0) 1 1 −1 −1
(χ1, χ1) 1 −1 −1 1

.

Exercise 2.18. Let G = G1 ×G2. Show that FG = FG1 ⊗ FG2 .

Exercise 2.19. Let H ≤ G and K ≤ Ĝ. Prove a similar result as in Theorem 2.6 for K, that is,

show that K⊥ ≅ ̂̂G/K. In addition, show the following.

(1) H = (H⊥)⊥ and K = (K⊥)⊥.
(2) G⊥ = {εG} and Ĝ⊥ = {0}.
(3) Make use of (2.7) to show that χ(x) = 1 for all χ ∈ Ĝ implies x = 0.

Exercise 2.20. Let G be a finite abelian group. Denote G(n) ∶= {g ∈ G ∣ gn = 1} and G(n) = {gn ∣
g ∈ G}. Show that (G(n))⊥ = Ĝ(n) and (G(n))⊥ = Ĝ(n).

Exercise 2.21 (Additive version of characters). Consider the quotient group Q/Z and let G be a
finite abelian group. Denote G# ∶= {f ∶ GÐ→ Q/Z ∣ f is a group homomorphism}. Define addition
on G# point-wise. Thus G# is again abelian. Show that Ĝ ≅ G#.

Exercise 2.22. In this exercise we will see ●̂ ∶ Az→ Â as a contravariant, exact, duality-preserving
functor. Let A, B, C be finite abelian groups, and suppose we have two group homomorphisms

A
f
Ð→ B

g
Ð→ C. As in Theorem 2.8 we obtain Ĉ

g∗

Ð→ B̂
f∗

Ð→ Â. Show the following.

(1) (g ○ f)∗ = f∗ ○ g∗.
(2) im f = ker g ⇐⇒ im g∗ = ker f∗.

3 The Space L2(G)
Let G be a finite abelian group of order n. Write G = {g0, . . . , gn−1}. Recall from (1.24) that
L2(G) = {f ∶ G Ð→ C}. Note that a map f ∈ L2(G) is completely determined by the vector
(f(g0), . . . , f(gn−1)) ∈ Cn. Conversely, every vector in Cn determines a map in L2(G). In other
words, L2(G) ≅ Cn as complex vector spaces. Just to state the obvious, the scalar multiplication
is given by (z ⋅ f)(g) = z(f(g)) for all z ∈ C. In particular, dimCL

2(G) = n = ∣G∣. The first goal is
to find a nice basis of L2(G).
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Theorem 3.1 (Linear Independence of Characters). For 1 ≤ k ≤ n, any k distinct characters of G
are linearly independent.

Proof. We induct on the number of characters considered. First, convince yourself that a single
character is linearly independent. Let χ1, . . . , χk be distinct characters, and assume

k

∑
i=1

aiχi = 0, ai ∈ C. (3.1)

We want to show that a1 = ⋯ = ak = 0. We have ∑ki=1 aiχi(g) = 0 for all g ∈ G. Since χ1 ≠ χk, there
exists g′ ∈ G such that χ1(g′) ≠ χk(g′). Now we have

0 =
k

∑
i=1

aiχi(g) =
k

∑
i=1

aiχi(g + g′) =
k

∑
i=1

aiχi(g)χi(g′). (3.2)

Multiply (3.1) on both sides by χk(g′) ∈ C, that is, for all g ∈ G we have

0 = χk(g′)
k

∑
i=1

aiχi(g). (3.3)

Now combine (3.2) and (3.3) to obtain

k−1

∑
i=1

ai(χk(g′) − χi(g′))χi(g) = 0 (3.4)

for all g ∈ G. Note that (3.4) is a linear combination of χ1, . . . , χk−1, and thus all the coefficients
must be 0 by inductive hypothesis. Since χ1(g′) − χk(g′) ≠ 0, we conclude that a1 = 0. Proceed
similarly for a2, . . . , ak.

Theorem 3.2. Ĝ is a basis for L2(G).

Proof. Since Ĝ ⊆ L2(G) we have spanCĜ ⊆ L2(G). Now the statement follows by Theorem 3.1 and
∣Ĝ∣ = n.

Exercise 3.3. Let χ1, . . . , χN and χ′1, . . . , χ
′
M be characters of G that satisfy ∑Ni=1 χi = ∑Mj=1 χ

′
j .

Show that the multisets {{χ1, . . . , χN}} and {{χ′1, . . . , χ′M}} coincide.

Definition 3.4. On L2(G) define the Hermitian inner product as

⟨ f ∣ g ⟩G = 1

∣G∣ ∑x∈G
f(x)g(x) (3.5)

Remark 3.5. Note that (3.5) gives rise to a norm function via ∥f∥ ∶= ⟨ f ∣ f ⟩1/2
G . Then clearly ∥f∥ ≥ 0

and ∥f∥ = 0 iff f = 0. Convince yourself that the Hermitian inner product is non-degenerate, that
is, if ⟨ f ∣ g ⟩G = 0 for all g ∈ L2(G) then f = 0 and if ⟨ f ∣ g ⟩G = 0 for all f ∈ L2(G) then g = 0. Note
that viewing f ∈ L2(G) as a complex vector of length n, then (3.5) is nothing else but the usual
Hermitian inner product in Cn. In other words, (L2(G), ∥●∥) is isomorphic to Cn as Hilbert spaces,
and thus it is itself a Hilbert space of dimension n.

Corollary 3.6. Ĝ is an orthonormal basis of L2(G).

Exercise 3.7. Find a basis for L2(Ĝ). Define an analogous inner product ⟨ ● ∣ ● ⟩Ĝ. Is the basis you
found orthonormal with respect to ⟨ ● ∣ ● ⟩Ĝ?
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Exercise 3.8. For f1, f2 ∈ L2(G) define their convolution as

(f1 ∗ f2)(g) ∶= ∑
h∈G

f1(h)f2(g − h). (3.6)

For all g ∈ G denote the δg ∈ L2(G) map δg(x) = 1 if x = g and δg(x) = 0 if x ≠ g. Show that
δg ∗ δh = δg+h.

Exercise 3.9. Show that ∆G ∶= {δg ∣ g ∈ G} is basis for L2(G).

Exercise 3.10. Since Ĝ is a basis, every f ∈ L2(G) can be expressed uniquely as

f = ∑
χ∈Ĝ

cχχ, cχ ∈ C. (3.7)

Find cχ in (3.7). Use this to find the change of basis matrix between ∆G and Ĝ for the case G = Z4.

4 The Discrete Fourier Transform

We first make use of the orthogonality relations 2.13 to motivate the Discrete Fourier Transform
(DFT) and then we show some properties of DFT. Fix f ∈ L2(G). Then f can be expressed
uniquely in terms of the basis ∆G as

f = ∑
g∈G

f(g)δg. (4.1)

The second orthogonality relation in (2.13) can be written in terms of ∆G as

∑
χ∈Ĝ

χ(g)χ(x) = ∣G∣δg(x) Ô⇒ δg(x) =
1

∣G∣ ∑
χ∈Ĝ

χ(g)χ(x). (4.2)

Substituting in (4.1) we obtain

f(x) = ∑
g∈G

f(g)
⎛
⎜
⎝

1

∣G∣ ∑
χ∈Ĝ

χ(g)χ(x)
⎞
⎟
⎠

= ∑
χ∈Ĝ

∑
g∈G

1

∣G∣
f(g)χ(g)χ(x)

= ∑
χ∈Ĝ

cχχ(x),

where

cχ =
1

∣G∣ ∑g∈G
f(g)χ(g) = ⟨ f ∣χ ⟩G. (4.3)

Definition 4.1. The Discrete Fourier transform of f ∈ L2(G) is the function f̂ ∈ L2(Ĝ) given by

f̂(χ) = ∑
g∈G

f(g)χ(g) = ∣G∣⟨ f ∣χ ⟩G = ∣G∣cχ.

We have also proved the following
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Theorem 4.2 (Fourier Inversion Formula). For any f ∈ L2(G) we have

f(x) = 1

∣G∣ ∑
χ∈Ĝ

f̂(χ)χ(x).

Exercise 4.3. Find the DFT of a character. Find the DFT of δg. Find the DFT of a constant
function.

Now we prove Theorem 2 on page 168.

Theorem 4.4. (1) Show that the Fourier transform ●̂ ∶ L2(G) Ð→ L2(Ĝ) is an isomorphism of
vector spaces.

(2) f̂ ∗ g(χ) = f̂(χ)ĝ(χ).
(3) ⟨ f ∣ f ⟩G = (1/∣G∣)⟨ f̂ ∣ f̂ ⟩Ĝ, where the inner product on L2(Ĝ) is given by

⟨F ∣H ⟩Ĝ = ∑
χ∈Ĝ

F (χ)H(χ). (4.4)

(4) Define for g ∈ G, f s(g) ∶= f(g + s). Then f̂ s(χ) = χ(s)f̂(χ)

Proof. (1) It is easy to check that the map

●̂
−1 ∶L2(Ĝ)z→ L2(G), f z→ {

GÐ→ C
g z→ 1

∣G∣ ∑χ∈Ĝ f(χ)χ(g)
, (4.5)

is the inverse of ●̂ . See also Theorem 4.2.
(2) Lisa proved this one. See also page 38 of the book.
(3) Recall that Lisa showed the identity for characters. In fact this is sufficient because the Hermi-

tian inner product is linear and characters form a basis for L2(G). However, bellow we use a
slightly different approach. Recall from Definition 4.1 that f̂(χ) = ∣G∣⟨ f ∣χ ⟩. We have

⟨ f̂ ∣ f̂ ⟩Ĝ = ∣G∣2 ∑
χ∈Ĝ

⟨ f ∣χ ⟩⟨ f ∣χ ⟩

= ∑
χ∈Ĝ

∑
a∈G

∑
b∈G

f(a)χ(a)χ(b)f(b)

= ∑
a∈G

∑
b∈G

f(a)f(b) ∑
χ∈Ĝ

χ(a − b)

= ∣G∣∑
a∈G

∑
a∈G

f(a)f(a)

= ∣G∣⟨ f ∣ f ⟩.

(4)

f̂s(χ) = ∑
g∈G

fs(g)χ(g) = ∑
g∈G

f(g + s)χ(g)

= ∑
a∈G

f(a)χ(a − s) = ∑
a∈G

f(a)χ(a)χ(s)

= χ(s)f̂(χ).
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Lemma 4.5. Let H ≤ G and let f ∈ L2(G) be such that f(g + h) = f(g) for all g ∈ G (that is, f is
constant in the cosets of H). Write G as disjoint union of its cosets: G = ⊍li=1(gi +H). Then

(1) f̂(χ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣H ∣
l

∑
i=1

f(gi)χ(gi), if χ ∈H⊥

0, if χ ∉H⊥.
(2) The map f̃ ∈ Ĝ/H, a +H z→ f(a) is well-defined, and for all χ ∈ Ĝ/H ≅H⊥ we have

̂̃
f(χ) = 1

∣H ∣
f̂(χ).

Proof. (1) The statement follows by Corollary 2.14 and the following computation.

f̂(χ) = ∑
g∈G

f(g)χ(g) =
l

∑
i=1
∑
h∈H

f(gi + h)χ(gi + h)

=
l

∑
i=1

f(gi)χ(gi) ∑
h∈H

χ(h).

(2) First of all, f̃ is clearly well-defined. Next, recall from Theorem 2.6 that H⊥ ≅ Ĝ/H via
[χz→ [Φχ ∶ g +H z→ χ(g)]. We have

̂̃
f(χ) = ∑

g+H∈G/H
f̃(g +H)χ(g +H)

=
l

∑
i=1

f(gi)χ(gi)

(1)= 1

∣H ∣
f̂(χ).

Theorem 4.6 (Poisson Summation Formula). Let H ≤ G and fix g ∈ G, f ∈ L2(G). Then

∑
h∈H

f(g + h) = 1

∣H⊥∣ ∑χ∈H⊥
f̂(χ)χ(g). (4.6)

In particular, for g = 0 we obtain

∑
h∈H

f(h) = 1

∣H⊥∣ ∑χ∈H⊥
f̂(χ). (4.7)

Proof. Let f ′ ∈ L2(G) be given by f ′(g) ∶= ∑h∈H f(g +H). Then f ′(g +h) = f ′(g) for all h ∈H. As
in Lemma 4.5(2) we obtain f̃ ∈ Ĝ/H given by g +H z→ f ′(g). Thus, the left-hand-side of (4.6)
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equals f̃(g +H). On the other hand we have

∑
χ∈H⊥

f̂(χ)χ(g) = ∑
χ∈H⊥

∑
b∈G

f(b)χ(b)χ(g)

= ∑
χ∈H⊥

l

∑
i=1
∑
h∈H

f(gi + h)χ(gi + h)χ(g) (as in Lemma 4.5)

= ∑
χ∈H⊥

l

∑
i=1

f ′(gi)χ(gi)χ(g) (since χ ∈H⊥)

= ∑
χ∈H⊥

1

∣H ∣
f̂ ′(χ)χ(g) (by Lemma 4.5(1))

= ∑
χ∈Ĝ/H

̂̃
f(χ)χ(g + h) (by Lemma 4.5(2))

= ∑
χ∈Ĝ/H

∑
y+H

f̃(y +H)χ(y +H)χ(g +H)

= ∑
y+H

f̃(y +H) ∑
χ∈Ĝ/H

χ(y + g +H)

= f̃(g +H) ⋅ ∣G/H ∣. (by Orthogonality Relations in G/H)

The result now follows because ∣H⊥∣ = ∣G/H ∣ by Theorem 2.6. The case when g = 0 is clear.

Exercise 4.7. Let G = G1 × ⋯ × Gn and fi ∈ L2(Gi). Define f ∈ L2(G) via (g1, . . . , gn) z→
∏n
i=1 fi(gi). Show that f̂ = ∏n

i=1 f̂i. That is, show that for all (χ1, . . . , χn) ∈ Ĝ ≅ Ĝ1 ×⋯ × Ĝn we
have

f̂(χ1, . . . , χn) =
n

∏
i=1

f̂i(χi).

Exercise 4.8. Let f ∈ L2(G). By using the natural identification G ≅ ̂̂G show that for all g ∈ G we

have ̂̂f(g) = ∣G∣f(−g).

Exercise 4.9. Convince yourself that for all g ∈ G the following map gives a linear transformation
of complex vector spaces.

Tg ∶L2(G)Ð→ L2(G), f z→ { Tgf ∶ G Ð→ C∗

x z→ f(g + x) . (4.8)

Now show the following.

(1) Show that characters are eigenvectors of Tg.
(2) Show that T̂gf = χ(g)f̂ and ⟨Tgf1 ∣Tgf2 ⟩G = ⟨ f1 ∣ f2 ⟩G for any f, f1, f2 ∈ L2(G).
(3) For any f ∈ L2(G) and χ ∈ Ĝ show that δg ∗ f = T−gf and χ ∗ f = f̂(χ)χ.

Exercise 4.10. Let G = Zn. Similarly as in Exercise 4.9 consider the linear transformation Dg ∶
L2(G)Ð→ L2(G) given by (Dgf)(x) = f(gx) for all f ∈ L2(G) and x ∈ G. Show that D̂gf =D−gf̂ .

4.1 Fast Fourier Transform

In this subsection we will consider the DFT for the very special case G = Zn. Let ω = exp(2πi/n).
Recall that in this case Ẑn = {χx ∣ x ∈ Zn}, where χx(y) = ωxy as in the proof of Theorem 2.1(1). We
will identify a character χx ∈ Ẑn with x ∈ Zn and think of the DFT as ●̂ ∶ L2(Zn)Ð→ L2(Zn), f z→
f̂ , where Definition 4.1 reads as

f̂(x) = ∑
y∈Zn

f(y)ω−xy. (4.9)
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To find the Fourier Transform of character χx we compute

χ̂x(z) = ∑
z∈Zn

χx(z)ω−zy = ∑
z∈Zn

ω−z(x−y),

and the Fourier matrix Fn = FZn from Definition 2.15 reads as

Fn = (ωxy)0≤x, y≤n−1 (4.10)

In Section 3 we saw how a map f ∈ L2(G) can be thought as a vector (f(g1), . . . , f(gn)) ∈ Cn where
gi ∈ G. For the purposes of this subsection we will need column vectors. So for f ∈ L2(Zn) denote
f = (f(0), . . . , f(n − 1))T and g = (f̂(0), . . . , f̂(n − 1))T. Clearly we have g = Fnf , and thus, to
compute the Fourier Transform are required n2 multiplications. However, it is possible to compute
the Fourier Transform much faster when n divisible by a high power of 2. Indeed, assume n = 2m
and write

f = (f ′, f ′′), where f ′ = (f(0), f(2) . . . , f(n − 2)), f ′ = (f(1), f(3) . . . , f(n − 1)).

Put g′ = Fmf
′ and g′′ = Fmf

′′. It is straightforward to check that for 0 ≤ j ≤ n − 1 we have
gj = g′j + ωjg′′j and for 0 ≤ j ≤ m we have gm+j = (g′)j − ωj(g′′))j . In other words, in order to

compute the Fourier Transform when n = 2m we will need 2m2 + m multiplications instead of
n2 = 4m2 (which is roughly half). If n = 2r then one need n

2 (r + 2) < n log(n) ≪ n2. This is known
as Cooley-Tukey algorithm; see also Theorem 1, page 153.

Remark 4.11. Assume n,m ∈ Z are coprime. By Theorem 1.6 we have Znm = Zn ×Zm, and thus,
by Exercise 2.18 we have Fnm = Fn ⊗ Fm. This fact speeds up the computation of the Fourier
Transform. Although less obvious, this applies to any n,m ∈ Z. See also the discussion on page
155.

5 Discrete Uncertainty Principle

In this section we give a discrete version of the classical uncertainty principle, which says that if
a function f(x) is essentially zero in ∆x and its Fourier transform (see (1.18)) f̂(y) is essentially
zero in ∆y then

∆x∆y ≥ 1 (5.1)

Compare (5.1) with Theorem 5.1. The uncertainty principle was used by Heisenberg in 1927 to
show that a particle’s position and momentum cannot be simultaneously determined. In other
words, the more you know about a particle’s position the less you know about its momentum, and
vice versa.

Recall that an inner product ⟨ ● ∣ ● ⟩ gives rise to norm function ∥●∥ via ∥f∥2 ∶= ⟨ f ∣ f ⟩. We will
make use of the Cauchy-Schwartz inequality

∣⟨ f ∣ g ⟩∣2 ≤ ∥f∥2 ⋅ ∥g∥2. (5.2)

In Remark 3.5 we discussed the norm associated to the Hermitian inner product (3.5). In this case
we will need a rescaled version, called the L2−norm and denoted ∥●∥2. Namely ∥f∥2

2 ∶= ∑x∈G ∣f(x)∣2.
In addition, we will need the following norm in L2(G):

∥f∥∞ ∶= max
x∈G

∣f(x)∣. (5.3)
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For a map f ∈ L2(G), the support of f is given by suppf = {x ∈ G ∣ f(x) ≠ 0}. It follows from the
very definitions above that

∥f∥2
2 = ∑

x∈G
∣f(x)∣2 ≤ ∥f∥2

∞ ⋅ ∣suppf ∣. (5.4)

Define

1(x) =
⎧⎪⎪⎨⎪⎪⎩

1, if x ∈ suppf,

0, if x ∉ suppf,
(5.5)

and note that we have f(x) = (f ⋅1)(x) = f(x) ⋅1(x) for all x ∈ G. Of course ∥●∥2, ∥●∥∞, supp, and
1 can be also defined over L2(Ĝ), and we will use the same notation.

Theorem 5.1. Let f ∈ L2(G) be not identically zero. Then

∣suppf ∣ ⋅ ∣suppf̂ ∣ ≥ ∣G∣.

Proof. By making use of the Fourier Inversion Formula and the fact that ∣χ(x)∣ ≤ 1 for all x ∈ G
(since χ(x) is a root of unity), we obtain

∥f∥∞ ≤ 1

∣G∣ ∑
χ∈Ĝ

∣f̂(χ)∣.

Now by making use of the Cauchy-Schwartz inequality we obtain

∥f∥2
∞ ≤ 1

∣G∣2
⎛
⎜
⎝
∑
χ∈Ĝ

∣f̂(χ)∣
⎞
⎟
⎠

2

= 1

∣G∣2
⎛
⎜
⎝
∑
χ∈Ĝ

∣f̂(χ)∣ ⋅ ∣1(χ)∣
⎞
⎟
⎠

2

≤ 1

∣G∣2
⎛
⎜
⎝
∑
χ∈Ĝ

∣f̂(χ)∣2
⎞
⎟
⎠
⋅
⎛
⎜
⎝

∑
χ∈suppf̂

∣1(χ)∣2
⎞
⎟
⎠

= 1

∣G∣2
∥f̂∥2

2 ⋅ ∣suppf̂ ∣

= 1

∣G∣
∥f∥2

2 ⋅ ∣suppf̂ ∣,

where the last equality follows by Theorem 4.4(3). Now (5.4) implies

∥f∥2
∞ ≤ 1

∣G∣
∥f∥2

∞ ⋅ ∣suppf ∣ ⋅ ∣suppf̂ ∣.

Since f is not identically zero we have ∥f∥2
∞ ≠ 0 and thus the statement follows.

Below we give two examples where Theorem 5.1 holds with equality.

Example 5.2. (1) Consider f = δ0, 0 ∈ G as in Exercise 3.8. Then suppf = {0}. On the other hand
δ̂0(χ) = 1 for all χ ∈ Ĝ. Thus suppf̂ = Ĝ, and ∣suppf ∣ ⋅ ∣suppf̂ ∣ = ∣G∣.

(2) Let T ⊆ G be a subset. Define

δT (x) =
⎧⎪⎪⎨⎪⎪⎩

1, if x ∈ T,
0, if x ∉ T.
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In this case we say that δ is supported in T . Now let H ≤ G be a subgroup. For f = δH we
clearly have ∣suppf ∣ = ∣H ∣. On the other hand by Corollary 2.14 we have

f̂(χ) = ∑
x∈G

f(x)χ(x) = ∑
x∈H

χ(x) =
⎧⎪⎪⎨⎪⎪⎩

∣H ∣, if χ ∈H⊥,
0, if χ ∉H⊥.

By Theorem 2.6 we have ∣suppf̂ ∣ = ∣H⊥∣ = ∣G∣/∣H ∣, and thus ∣suppf ∣ ⋅ ∣suppf̂ ∣ = ∣G∣. The above
argument also shows that δ̂H = ∣H ∣δH⊥ .

Definition 5.3. Let f ∈ L2(G), and T ⊆ G, W ⊆ Ĝ.

(1) The time-limiting operator PT is given by PT f ∶= f ⋅ δT , that is,

(PT f)(x) = f(x)δT (x) =
⎧⎪⎪⎨⎪⎪⎩

f(x), if x ∈ T
0, if x ∉ T.

(5.6)

(2) The band-limiting operator RW is given by

(RW f)(x) =
1

∣G∣ ∑χ∈W
f̂(χ)χ(x). (5.7)

Remark 5.4. What is the band-limiting operator of a time-limiting operator, or the other way
around? For this we would need the Fourier transform of PT f . We have

P̂T f(χ) = ∑
x∈G

f(x)δT (x)χ(x) = ∑
x∈T

f(x)χ(x).

Thus

(RWPT f)(x) =
1

∣G∣ ∑χ∈W
P̂T f(χ)χ(x) =

1

∣G∣ ∑χ∈W
∑
y∈T

f(χ)χ(x − y)

Similarly, for x ∈ T we have

(PTRW f)(x) = (RW f)(x)δT (x) =
1

∣G∣ ∑χ∈W
f̂(χ)χ(x),

and (PTRW f)(x) = 0 if x ∉ T .

Definition 5.5. Let Q ∶ L2(G)Ð→ L2(G) be a linear operator.

(1) The operator norm ∥Q∥ of Q is defined as

∥Q∥ = max{
∥Qf∥2

∥f∥2

∣ f ∈ L2(G), f ≠ 0} .

(2) Think of Q as the n×n complex matrix of Q with respect to the basis ∆G. Then, the L2-norm
of Q is defined as ∥Q∥2

2 = tr(Q†Q) where the dagger means the conjugate transpose and tr is
the trace of a matrix.

Exercise 5.6. Show that ∥●∥ and ∥●∥2 satisfy the following axioms of a matrix norm.

(1) ∥Q∥ ≥ 0.
(2) ∥Q∥ = 0 ⇐⇒ Q = 0.
(3) ∥cQ∥ = ∣c∣∥Q∥ for c ∈ C.
(4) ∥Q1 +Q2∥ ≤ ∥Q1∥ + ∥Q2∥.
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(5) ∥Q1Q2∥ ≤ ∥Q1∥∥Q2∥.

Exercise 5.7. Recall the linear operator Tg ∶ L2(G) Ð→ L2(G) from Exercise 4.9. Show that
∥Tg∥ = 1.

Lemma 5.8. (1) ∥RW ∥ = 1.
(2) ∥PT ∥ = 1.

Proof. (1) Note that ∥RW ∥ ≤ 1 iff ∥RW f∥2
2 ≤ ∥f∥2

2, f ≠ 0. We have

∥RW f∥2
2 = ∑

x∈G
∣(RW f)(x)∣2 =

1

∣G∣2 ∑x∈G

RRRRRRRRRRR
∑
χ∈W

f̂(χ)χ(x)
RRRRRRRRRRR

2

= 1

∣G∣2 ∑x∈G

⎛
⎝ ∑χ∈W

f̂(χ)χ(x)
⎞
⎠
⎛
⎝ ∑ψ∈W

f̂(ψ)ψ(x)
⎞
⎠

= 1

∣G∣ ∑χ∈W
∣f̂(χ)∣2

≤ ∥f∥2
2.

To finish the proof it is enough to find f ∈ L2(G) such that ∥RW f∥2
2 = ∥f∥2

2. That is, we are
looking for f ∈ L2(G) that satisfies f̂(χ) = δW (χ). Then making use of the Fourier Inversion
Formula one finds

f(x) = 1

∣G∣ ∑χ∈W
δW (x)χ(x) = (RW δW )(x).

(2) Let 0 ≠ f ∈ L2(G). Then

∥PT f∥2
2 = ∑

x∈G
∣(PT f)(x)∣2 = ∑

x∈T
∣f(x)∣2 ≤ ∥f∥2

2.

The same computation shows that for f = δT we have ∥PT f∥2
2 = ∥f∥2

2. The statement now
follows.

Exercise 5.9. Let Q ∶ L2(G) Ð→ L2(G) be a linear operator. Then Q is an orthogonal projection
if Q† = Q and Q2 = Q. Show the following.

(1) If Q1, Q2 are two orthogonal operators then ∥Q1Q2∥ = ∥Q2Q1∥ ≤ 1.
(2) Show that PT and RW are orthogonal projections8.
(3) Let Ξ be the set of all eigenvalues (that is, the spectrum) of Q†Q and the let λ be the maximal

eigenvalue (note first that all the eigenvalues of Q†Q are real and nonnegative). Show that

∥Q∥2 = λ and ∥Q∥2
2 = ∑

λ∈Ξ
λ.

Theorem 5.10. Let Q = RWPT . Then

√
1

∣G∣
∥Q∥2 ≤ ∥Q∥ ≤ ∥Q∥2 =

¿
ÁÁÀ∣W ∣∣T ∣

∣G∣
.

8For Q† = Q, you can either think of them as matrices with respect to ∆G, or recall that it is enough to show
⟨Qf ∣ f ⟩G = ⟨ f ∣Qf ⟩G.
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Proof. The only interesting part is the last equality as the first two inequalities follow easily by
Exercise 5.9(2). To do so we will need the matrix of RWPT with respect to the basis ∆G. By
Remark 5.4 we have

(RWPT f)(x) = ∑
y∈G

qT,W (x, y)f(y),

where

qT,W (x, y) = q(x, y) ∶= 1

∣G∣
δT (y) ∑

χ∈W
χ(x − y), x, y ∈ G.

Now we compute9

∥RWPT ∥2
2 = ∑

x∈G
y∈G

∣q(x, y)∣2 = 1

∣G∣2 ∑x∈G
y∈G

RRRRRRRRRRR
δT (y) ∑

χ∈W
χ(x − y)

RRRRRRRRRRR

2

= 1

∣G∣2 ∑x∈G
y∈T

∑
χ∈W

χ(x − y) ∑
ψ∈W

ψ(x − y)

= 1

∣G∣2 ∑y∈T
∑
χ∈W
ψ∈W

ψ(y)χ(y) ∑
x∈G

χ(x)ψ(x)

= 1

∣G∣ ∑y∈T
∑
χ∈W

χ(y)χ(y)

= ∣W ∣∣T ∣
∣G∣

.

Definition 5.11. A map f ∈ L2(G) is called ε-concentrated on T ⊆ G if ∥f − δT f∥2 ≤ ε∥f∥2. A
map F ∈ L2(Ĝ) is called η-concentrated on W ⊆ Ĝ if ∥F − δWF ∥2 ≤ η∥f∥2. f ∈ L2(G) is called
η-band-limited to W if there exists fW ∈ L2(G) such that suppf̂W ⊆W and ∥f − fW ∥2 ≤ η∥f∥2.

Theorem 5.12. Let 0 ≠ f ∈ L2(G) be ε-concentrated on T and η-band-limited to W . Then

¿
ÁÁÀ∣T ∣∣W ∣

∣G∣
≥ ∥PTRW ∥ ≥ 1 − ε − η.

Proof. Note that the first inequality follows by Theorem 5.10 and Exercise 5.9. Let fW be such
that suppf̂W ⊆ W and ∥f − fW ∥2 ≤ η∥f∥2. It is easy to see that RW fW = fW . Next, it follows
(easily) by Exercise 5.9(3) that ∥PT ∥2 = 1. Also recall that PT f = δT f . Now we compute

∥f∥2 − ∥PTRW f∥2 ≤ ∥f − PTRW f∥2

≤ ∥f − PT f∥2 + ∥PT f − PTRW f∥2

≤ ε∥f∥2 + ∥PT ∥2∥f − fW ∥2

≤ ε∥f∥2 + η∥f∥2.

To conclude the proof divide by 0 ≠ ∥f∥2.

9Make sure to justify the very first equality.
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6 Error-Correcting Codes: MacWilliams Theorem

It is now time to see the first application of the Fourier transform. In this section we will introduce
basic notions from coding theory. Although we will focus on the binary case (that is, over the
binary field F2) everything can be easily adapted over any finite field.

Before we give concise definitions let us explore a simple scenario to gain some intuition. Assume
you need to answer a yes-or-no question you received. Think of 1 as “yes” and 0 as “no”. You read
the question and you want to respond “yes”, that is, you send out 1. During transmission an error
may occur. The errors in this case are bit-flip erros: 1 z→ 0 or 0 z→ 1. Assume that a bit flips
with probability10 p. Thus, with probability 1 − p no error will occur. Now instead of sending 1,
send out the string 111. Errors may occur during transmission, and assume now the string is abc.
It seems reasonable to decode the corrupted string abc as 1 if there are at least two 1 in it, that is,
if at most one error has occurred. The options are:

(1) No error happens during transmission. The probability of this event is (1 − p)3.
(2) One error occurs during transmission. The probability of this event is 3p(p − 1)2.
(3) Two errors occur during transmission. The probability of this event is 3p2(p − 1).
(4) Three errors occur during transmission. The probability of this event is p3.

Thus, the probability that at most one error occurs is (1 − p)3 + 3p(1 − p)2, which approaches one
as p gets smaller. In this way we have drastically increased the likelihood of decoding correctly.
However, be aware that in the less likely event that two errors occur, the decoding will be incorrect.

A binary linear code of length n is a vector space C ⊆ Fn2 . Elements of C are called codewords.
If the dimension of C is k we say that C is an [n, k]-code. The Hamming distance of x, y ∈ Fn2 is

dH(x, y) ∶= ∣{i ∣ xi ≠ yi}∣. (6.1)

The Hamming distance is indeed a distance function as it satisfies the following:

(1) dH(x, y) ≥ 0.
(2) dH(x, y) = 0 iff x = y.
(3) dH(x, y) = dH(y, x).
(4) dH(x, y) ≤ dH(x, z) + dH(z, y).

Exercise 6.1. Show that the Hamming distance is translation invariant, that is, for all z ∈ Fn2 we
have dH(x + z, y + z) = dH(x, y).

The Hamming distance gives rise to the Hamming weight wtH(x) ∶= dH(x,0) = ∣{i ∣ xi ≠ 0}∣. The
minimum distance of C is

dist(C) ∶= min
x,y∈C
x≠y

{dH(x, y)} = min
x∈C
x≠0

{wtH(x)}, (6.2)

where the last equality follows by the linearity of C and Exercise 6.1. If dist(C) = d we say that C
is an [n, k, d]-code.

Remark 6.2. Let C be and [n, k, d]-code. Since C is a subspace, it is the row space of a k × n
matrix G (pick a basis of C and use the basis codewords as rows of G). Note that G has rank k.
We call G generating matrix. In other words we have C = {xG ∣ x ∈ Fk2}. We say that x ∈ Fk2 is the
message and xG ∈ C is its encoding. By performing row and column operations we may assume
(without loss of generality, which needs a little bit of “convince yourself”) that a generating matrix

10Of course the smaller p is the better the channel is. Obtaining high quality channels is an engineering task.

21



is of the standard form G = [Ik ∣ A]. With a generating matrix in standard form, x is encoded as
xG = (x, y) where y = xA ∈ Fn−k2 . Thus the transmitted word x appears in the first k bits of its
encoding. Similarly, C is the kernel11 of a (n − k) × n matrix H. Such a matrix is called parity
check matrix. In other words C = {x ∈ Fn2 ∣ HxT = 0}. If G = [Ik ∣ A] is a generating matrix then
H = [AT ∣ In−k] is a parity check matrix in standard form.

Definition 6.3. Let C ⊆ Fn2 be a linear code. The dual code is

C⊥ ∶= {x ∈ Fn2 ∣ x ⋅ c =
n

∑
i=1

xici = 0 for all c ∈ C}.

Exercise 6.4. Let C be an [n, k]-code. Show the following.

(1) Since C is a vector space it is in particular a finite abelian group. We used the perp notation to
denote the dual group as in Definition 2.5(1). Show that the dual group and the dual code are
isomorphic12.

(2) G is a generating matrix of C iff G is the parity check matrix of C⊥ and H is the parity check
matrix of C iff H is the generating matrix of C⊥. Conclude that C⊥ is an [n,n − k]-code.

Example 6.5 (The Hamming code). In this example we will see in action one of the most famous
error-correcting codes - the Hamming [7,4,3]-code. Let C be the [7,4]-code given by the following
generating matrix in standard form

G =
⎛
⎜⎜⎜
⎝

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎟⎟⎟
⎠
.

Then C has 24 = 16 codewords. By going through all the codewords you will verify that dist(C) = 3.
A parity check matrix for C is

H =
⎛
⎜
⎝

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎟
⎠
.

Note that the columns of H are all the elements of F3
2 and they are ordered in such a way that the

ith column of H is the binary expansion of i. The Hamming code can correct one error. Assume
that for the message x ∈ F4

2 at most one error occurred in xG during transmission. Of course if no
error occurred we’re happy. So assume that a single error occurred. Denote r the word received,
that is xG with an error occurred somewhere. Since a single error has occurred we may write
r = xG + ei where ei is the ith standard basis vector. Since H is a parity check matrix we have
H(xG)T = (HGT)xT = 0. The column vector z ∶= HrT = HeiT ∈ F3

2 is called the error syndrome.
The error syndrome tells us where the error occurred. After we spot the index i where the error
occurred we easily correct it by flipping the bit i.

We now turn to the main purpose of this section.

Definition 6.6. Let C be an [n, k]-code. Let Ai ∶= ∣{x ∈ C ∣ wtH(x) = i}∣. The weight enumerator
polynomial of C is given by

wC(x, y) =
n

∑
i=0

Aix
n−iyi.

11We are talking about the right kernel because it is customary in coding theory to use row vectors.
12Thus the usage of the perp notation in Definition 6.3 is justified. We will think of C⊥ as a dual code and as dual

group interchangeably, and it should be clear from context what we mean.
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Theorem 6.7 (MacWilliams Theorem). Let C be an [n, k]-linear code. Then the weight enumerator
polynomial of the dual code C⊥ is

wC⊥(x, y) =
1

∣C∣
wC(x + y, x − y).

Proof. Consider the function f ∶ C Ð→ C, c z→ xn−wtH(c)ywtH(c). Note first that wC(x, y) =
∑c∈C f(c). Since F2 = Z2 we can make use of (4.9) and Remark 2.4 to compute f̂ . Since −1 is a
second root of unity we have

f̂(c) =∑
v∈C

xn−wtH(v)ywtH(v)(−1)∑
n
i=1 vici

=
n

∏
i=1

⎛
⎝

1

∑
vi=0

(−1)civix1−viyvi
⎞
⎠

= (x + y)n−wtH(c)(x − y)wtH(c).

By Theorem 4.6 we have

wC⊥(x, y) = ∑
a∈C⊥

f(a) = 1

∣C∣∑c∈C
f̂(c)

= 1

∣C∣∑c∈C
(x + y)n−wtH(c)(x − y)wtH(c)

= 1

∣C∣
wC(x + y, x − y).

Example 6.8. Consider again the Hamming code from Example 6.5. It is easy to see that its
weight enumerator polynomial is

wC(x, y) = x7 + 7x4y3 + 7x3y4 + y7. (6.3)

By making use of Theorem 6.7 one computes

wC⊥(x, y) = x7 + 7x3y4. (6.4)

Note that (6.4) implies dist(C⊥) = 4, and thus the dual of the Hamming [7,4,3]-code is an [7,3,4]-
code. In literature the dual of the Hamming code is know as the shortened Hadamard code or as a
simplex code.

7 Quadratic Reciprocity Law

Throughout this section p will be an odd prime and we will work with the field Zp. Recall that Z∗p
is cyclic. Fix g a generator. In particular gp−1 = 1 and g(p−1)/2 = −1. Denote Qp = {x2 ∣ x ∈ Z∗p}.

Elements of Qp are called quadratic residues. Note that 0 is not (considered) a quadratic residue.
Put Np ∶= Z∗p −Qp. Elements of Np are called quadratic nonresidues.

Remark 7.1. Let f ∶ Z∗p Ð→ Z∗p , x z→ x2. Clearly f is a homomorphism and im f = Qp. Thus

Qp is a cyclic subgroup. In fact Qp = {g2i ∣ 0 ≤ i < (p − 1)/2}. It follows that ∣Qp∣ = (p − 1)/2 and
∣Qp∣ = ∣Np∣. Moreover it is not difficult to see that QpQp = Qp, NpQp = Np, and NpNp = Qp.
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Definition 7.2. Let a ∈ Z be not divisible by p. The Legendre symbol is

(a
p
) =

⎧⎪⎪⎨⎪⎪⎩

1, if a ∈ Qp,
−1, if a ∈ Np.

That is, the Legendre symbol is a map Z − pZÐ→ C.

.

Lemma 7.3 (Euler’s Criterion). Suppose that p does not divide a. Then

(a
p
) ≡ a(p−1)/2(modp).

As an immediate consequence we have

(−1

p
) = (−1)(p−1)/2.

Proof. Since p does not divide a we have a ∈ Z∗p . Recall that we have fixed a generator g of Z∗p .

Thus, there exists t such that a = gt. Clearly a ∈ Qp iff t is even. It follows that (a
p
) = (−1)t. We

mentioned that g(p−1)/2 ≡ −1. Thus

a(p−1)/2 ≡ (−1)t ≡ (a
p
)(modp).

Corollary 7.4. With a slight abuse of notation, the map

(
●

p
) ∶ Z∗p Ð→ C, aÐ→ (a

p
),

is a (multiplicative, of course) homomorphism, and thus a Dirichlet character (see Example 2.3).

Proof. Immediate consequence of the proof of Lemma 7.3.

Definition 7.5.

χp(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x
p
), if x ≠ 0,

0, if x = 0.

Note that by Corollary 7.4 we have χp ∈ Ẑp.

Lemma 7.6. χ̂p(−x) = χp(x)χ̂p(−1).

Proof. Note that if x = 0 the statement is trivial. Assume now that x ≠ 0. We have

χ̂p(−x) = ∑
a∈Zp

χp(a) exp(2πixa

p
) =

p−1

∑
a=1

(a
p
) exp(2πixa

p
)

=
p−1

∑
b=0

(bx
−1

p
) exp(2πib

p
) = (x

−1

p
)χ̂p(−1)

= χp(x)χ̂p(−1),

where by x−1 we denote a representative of x−1. The very last equality follows from χp(x−1) =
(χp(x))−1 = χp(x).
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Lemma 7.6 implies that χp is a constant multiple of its own Fourier transform because

χ̂p(x) = χp(−x)χ̂p(−1) = χp(x)[χp(−1)χ̂p(−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

constant

]. (7.1)

Definition 7.7. The Gauss sum of a ∈ Z∗p and χ ∈ Ẑ∗p is

g(a,χ) ∶= χ̂(−x) = ∑
x∈Z∗p

χ(x) exp(2πiax

p
) .

Exercise 7.8. Show that g(a,χ) = χ(g)g(1, χ).

Throughout we will denote g ∶= g(1, χp) = χ̂p(−1).

Lemma 7.9. g2 = (−1)(p−1)/2p.

Proof. Apply the Fourier transform to Lemma 7.6 and use Exercise 4.8 to obtain

pχp(x) = χ̂p(x)χ̂p(−1). (7.2)

Evaluate (7.2) at x = −1 to obtain g2 = pχp(−1). Making use of Euler’s criterion we have

g2 = pχp(−1) = (−1

p
)p = (−1)(p−1)/2p.

Lemma 7.10. Let q ≠ p be an odd prime. Then

gq−1 ≡ (g
2

q
)(mod q).

Proof. Since q is odd, by Euler’s Criterion we have

(g
2

q
) ≡ (g2)(q−1)/2(mod q) = gq−1(mod q).

Note that for an odd prime q = 2k+1, by Lemma 7.9 we have gq−1 = pk ∈ Z, which is not a priori
clear from the definition of g. Clearly g ∉ Z. Let ω = exp(2πi/p). Then g ∈ Z[ω], where

Z[ω] = {
r

∑
i=0

aiω
i ∣ ai ∈ Z, r ≥ 0} , (7.3)

is the polynomial ring with variable ω and integer coefficients.

Exercise 7.11. Show the following.

(1) Z[ω] ∩Q = Z. (Hint: Use the fact that the minimal polynomial of ω is xp−1 +⋯ + x + 1.)
(2) For any prime q and α1, . . . , αk ∈ Z[ω] we have

(
k

∑
i=1

αi)
q

≡ (
k

∑
i=1

αqi)(mod q).
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Lemma 7.12. Let q ≠ p be an odd prime. Then (χ̂p(x))q ≡ χ̂p(qx)(mod q).

Proof. We have

(χ̂p(x))q =
⎛
⎜
⎝
∑
a∈Zp

(a
p
) exp(−2πiax

p
)
⎞
⎟
⎠

q

≡ ∑
a∈Zp

(a
p
) exp(−2πiqax

p
)

= χ̂p(qx),

where the congruence follows by Exercise 7.11(2).

Theorem 7.13 (Quadratic Reciprocity Law). Let q ≠ p be an odd prime. Then

(p
q
)(q
p
) = (−1)

p−1
2

q−1
2 .

Proof. Evaluate Lemma 7.12 at x = −1 and make use of Lemma 7.6 to obtain

gq ≡ χ̂p(−q) ≡ (q
p
)g (mod q). (7.4)

Multiply (7.4) by g and make use of Lemma 7.10 to obtain

(q
p
)g2 ≡ gq−1g2 ≡ (g

2

q
)g2 ≡ (mod q). (7.5)

By Lemma 7.9 we have

(−1)(p−1)/2p(g
2

q
) ≡ (−1)(p−1)/2p(q

p
) (mod q). (7.6)

Since gcd(p, q) = 1 we can cancel out p in (7.6) and the equivalence becomes equality. Since the
Legendre symbol is multiplicative, and by Lemmas 7.9 and 7.3 we obtain

(q
p
) = (g

2

q
) = ((−1)(p−1)/2p

q
) = ((−1)(p−1)/2

q
)(p
q
) = (−1

q
)
(p−1)/2

(p
q
) = (−1)

p−1
2

q−1
2 (p

q
). (7.7)

Exercise 7.14. Show that

(2

p
) = (−1)

p2−1
8 .

Why does the proof of Theorem 7.13 fall apart for the case q = 2?
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8 Graphs over Finite Abelian Groups

We start with some terminology and notation. Let X be a graph. We will denote V (X) =
{x1, . . . , xn} the set of vertices of X and E(X) the set of edges. A graph is called k-regular if
each vertex is adjacent to exactly k vertices, that is, if the degree of each vertex is k. The distance
between two vertices is the number of edges in the shortest path that connects the two. We will
denote d the diameter of a graph, that is, the greatest distance between any pair of vertices. On
the other hand, the girth of a graph, denoted g, is the number of edges in a shortest cycle contained
in the graph. The adjacency matrix of X is an n × n matrix A(X) = (ai,j) where

ai,j =
⎧⎪⎪⎨⎪⎪⎩

1, if (xi, xj) ∈ E(X),
0, else.

As usual, we put L2(V (X)) = {f ∶ V (X)Ð→ C}. Then A(X) acts on L2(V (X)) via

(A ⋅ f)(x) = ∑
y adjacent to x

f(y), for any x ∈ V (X). (8.1)

Thus we may think of the adjacency matrix A ∶ L2(V (X))Ð→ L2(V (X)) as an adjacency operator.
Let G be a finite abelian group. In this section we will consider graphs whose vertices are

labeled by G, that is, V (X) = G. A subset S ⊆ G is called symmetric if −x ∈ S for all x ∈ S. Note
that a subgroup of G constitutes a symmetric set (with the additional property that 0 ∈ S). The
Cayley graph over G associated to S, denoted X = X(G,S), is the graph where V (X) = G and
E(X) = {(x,x + s) ∣ x ∈ V (X), s ∈ S}. Then (8.1) reads as

Af(x) =∑
s∈S

f(x + s) = (δS ∗ f)(x). (8.2)

Note that X(G,S) is a ∣S∣-regular graph. It is easy to see that ⟨Af ∣ g ⟩G = ⟨ f ∣Ag ⟩G, and thus A is
a self-adjoint operator. In particular A is diagonalizable. We will pay special attention to the case
G = Zn associated to the shell S(r) ∶= {±r(modn)} and the ball B(r) ∶= {0,±1, . . . ,±r(modn)}.

Theorem 8.1 (Spectra of Cayley graphs). The set of eigenvalues (that is, the spectrum) of A(X),
where X =X(G,S), is {δ̂S(χ) ∣ χ ∈ Ĝ}.

Proof. As in (8.2) we have Af = δS∗f . By Theorem 4.4(2) we have Âf(χ) = δ̂S ∗ f(χ) = δ̂S(χ)f̂(χ).
Note that the latter gives a diagonalization of A. To point out this let us use the old notation of
the Fourier transform Ff ∶= f̂ . Thus for h = Ff = f̂ we have

[(FAF−1)(h)](χ) = (FδS(χ)) ⋅ h(χ).

Now the statement follows by the Spectral Theorem for self-adjoint operators.

Example 8.2. Theorem 8.1 tells us that the eigenvalues of A(X) are precisely

δ̂S(χ) =∑
s∈S

χ(s) =∑
s∈S

χ(s), χ ∈ Ĝ. (8.3)

For the case G = Zn, recall that, as in (4.9), the Fourier transform takes values in Zn rather that
in L2(Zn). In this case the eigenvalues of A(X) are precisely

δ̂S(x) = ∑
s∈S

exp(2πixs

n
) , x ∈ Zn. (8.4)

27



Let us consider now two special cases. The Cayley graph X =X(Zn, S(1)), that is, the cycle on n
vertices. By Theorem 8.1, the eigenvalues of X are

δ̂S(x) = ∑
s∈S(1)

exp(2πixs

n
) = exp(−2πix

n
) + exp(2πix

n
) = 2 cos(2πx

n
) ,

where the last equality follows by Euler’s formula exp(ix) = cos(x) + i sin(x). Similarly, if we
consider the Cayley graph X =X(Zn,B(r)), we find that the eigenvalues of A(X) are

δ̂S(x) =
r

∑
k=−r

exp(2πikx

n
) = 1 + 2 cos(2πx

n
) +⋯ + 2 cos(2πrx

n
) , x ∈ Zn. (8.5)

Note that for x ≠ 0, that is, n doesn’t divide x, we can rewrite13 (8.5) as

δ̂S(x) =
sin(πx(2r + 1)/n)

sin(πx/n)
. (8.6)

Remark 8.3. By making use of (8.2) and (8.3) it follows easily that χ ∈ G is an eigenfunction14

of A(X) corresponding to the eigenvalue δ̂S(χ). That is (A ⋅ χ) = δ̂S(χ)χ holds for all χ ∈ Ĝ.

8.1 Four Questions about Cayley Graphs

Here we will discuss questions of interests about Cayley graphs. We will focus to finite abelian
groups G and symmetric sets S for which the questions are somewhat easy.

Question 8.4. Let X =X(G,S) be the Cayley graph over G associated to S.

(1) Is X Ramanujan15, that is, if λ ∈ Spec(A(X)), ∣λ∣ < k, does λ satisfy ∣λ∣ ≤ 2
√
k − 1?

(2) Is16 0 ∈ Spec(A(X))?
(3) Can we bound the diameter d?
(4) Can we bound the girth g?

Example 8.5. (1) Consider the cycle X(Zn, S(1)}). By (8.4) we know the spectrum of A(X),
namely,

Spec(A(X)) = {2 cos(2πx

n
) ∣ x ∈ Zn} .

Thus X is clearly Ramanujan and 0 ∈ Spec(A(X)) iff n is divisible by 4. Since X is a cycle
with n vertices, it follows that d = ⌊n/2⌋ and g = n.

(2) Consider the Cayley graph X(Zn,B(r)). It is easy to see that due to (8.6) we have X is not
Ramanujan for large values of n and that 0 ∉ Spec(A(X)) iff gcd(n,2r + 1) = 1. On the other
hand, X has loops since 0 ∈ B(r). Thus g = 1. Computing the diameter is trickier. See Theorem
1, page 77 for an upper bound.

Exercise 8.6. Show that for any prime p and any symmetric set {0} ≠ S ⊊ Zp, 0 ∉ Spec(A(X))
where X =X(Zp, S).

13This is a nice little trigonometric trick.
14Since A(X) is an operator on the function space L2(G) the “vectors” are functions and thus the word “eigen-

function”.
15See also Theorem 1, page 54 for facts on the spectra of k-regular graphs to gain some intuition.
16By the Spectral Theorem, the determinant of a matrix is equal to the product of its eigenvalues, and thus the

question is equivalent with whether or not A(X) is invertible.
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Let Fpn be the finite field with pn elements. Recall the norm function from (8.12). Recall also
the notation dn ∶= (pn−1)/(p−1) = ∣Ξn∣ where Ξn = {x ∈ Fpn ∣ N(x) = 1}. Note that Ξn is symmetric
iff n is even, and thus in what follows we restrict ourselves to even n.

Definition 8.7. Let n be even. The graph X = X(Fpn ,Ξn), that is, V (X) = Fpn and E(X) =
{(x,x + s) ∣ x ∈ Fpk , s ∈ Ξn}, is called Winnie Li’s graph.

Example 8.8. Consider the field on four elements F4 = {0,1, α,α2}, where α2 = α + 1, that is,
F4 = F2[x]/(x2 + x + 1). Since ∣Ξ2∣ = (4 − 1)/(2 − 1) = 3 and N(0) = 0 we have Ξ2 = {1, α,α2}. Note
that by definition (x, y) ∈ E(X) iff x − y ∈ Ξ2 = {1, α,α2} iff x ≠ y. In other words, there is an edge
between every two different vertices. That is X =X(F22 ,Ξ2) is the complete graph in four vertices.
In particular, X has diameter 1 and girth 3.

Remark 8.9. In order to attempt answering Question 8.4(1)-(2) for the Winnie Li’s graph one
needs a complete description of F̂pn . But we covered this in Remark 2.2. Namely, we have F̂pn =
{χx ∣ x ∈ Fpn}, where χx(y) ∶= ωtr(xy) and ω = exp(2πi/p). By Remark 8.3 it follows that χx is an
eigenfunction corresponding to the eigenvalue

δ̂Ξn(χx) = ∑
s∈Ξn

χx(s) = ∑
s∈Ξn

ωtr(sx) = ∑
s∈Fpn

N(s)=1

exp(2πi(tr(sx))
p

) .

For a discussion for the case n = 2 see page 75 and the references therein.

Exercise 8.10. Let Kn denote the complete graph on n vertices. Show that Kn is a Cayley graph
and compute Spec(A(Kn)). Is Kn Ramanujan?

8.2 Random Walks in Cayley Graphs

Consider the Cayley graph X = X(Zn, S) with ∣S∣ = k. Then X is a k-regular graph. Throughout
we will assume that X is not bipartite. Assume that a person is standing in vertex x ∈ V (X) and
that the person walks along the edges of X. Thus the person can walk from x to x + s for any s ∈ S.
We assume that all the events occur with equal probability 1/k, which makes the event a random
walk. A random walk gives rise to the Markov transition matrix

T = (pi,j)0≤i,j≤n =
1

k
A(X), (8.7)

where A(X) is the adjacency matrix of X. Similarly as A(X), T can be viewed as a transition
operator by acting on L2(Zn) (as in (8.1)). Clearly T is self-adjoint.

Remark 8.11. Since T = (1/k)A(X) we have Spec(T ) = (1/k)Spec(A(X)). By making use of
Theorem 1, page 54 we conclude that Spec(T ) is of the form

λ1 = 1 > λ2 ≥ ⋯ ≥ λn > −1. (8.8)

It follows that
β ∶= max{∣λ∣ ∣ λ ∈ Spec(T ), λ ≠ 1} < 1. (8.9)

Since T is self-adjoint we will fix a orthonormal basis of eigenfunctions B = {φ1, . . . , φn}. Of course
the basis satisfies

Tφi = λiφi,1 ≤ i ≤ n, and ⟨φi ∣φj ⟩ =
⎧⎪⎪⎨⎪⎪⎩

1, i = j
0, i ≠ j.

It is easy to verify that to eigenvalue λ1 = 1 corresponds the eigenfunction φ1(x) ∶= 1/
√
n for all

x ∈ Zn.
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A probability density on Zn is a function p ∈ L2(Zn) that satisfies

p(x) ≥ 0 for all x ∈ Zn, and ∑
x∈Zn

p(x) = 1.

If the probability density depends on time we will write p(t)(x) and interpret it as the probability
the person is at vertex x at time t. We have

p(t+1)(x) = Tp(t)(x) = T t+1p(0)(x).

The probability density u(x) ∶= 1/n for all x ∈ Zn is called uniform density.

Theorem 8.12. Let X be a connected nonbipartite k-regular graph with n vertices. For any prob-
ability density p we have

lim
t→∞

T tp = u.

Proof. Using the basis B from Remark 8.11, we may write

p(x) =
n

∑
i=1

⟨p ∣φi ⟩φi(x). (8.10)

Then applying T t to (8.10) and using the fact that φi is an eigenfunction corresponding to λi we
obtain

T tp(x) =
n

∑
i=1

⟨p ∣φi ⟩λtiφi(x). (8.11)

Now by making use of (8.8) and the fact that ∑x∈X p(x) = 1 we obtain

lim
t→∞

T tp = ⟨p ∣φ1 ⟩φ1 = u.

Recall the L2-norm form Section 5. For f ∈ L2(V (X)) we define the L1-norm as ∥f∥1 ∶=
∑x∈V (X) ∣f(x)∣. The two norms satisfy

∥f∥2 ≤ ∥f∥1 ≤ ∣V (X)∣1/2∥f∥2. (8.12)

Exercise 8.13. Let B be as in Remark 8.11. Show that for any f ∈ L2(V (X)) we have

n

∑
i=1

∣⟨ f ∣φi ⟩∣2 = ∥f∥2
2.

We have the following.

Theorem 8.14. Let X be a connected nonbipartite k-regular graph with n vertices and let β be as
in (8.9). For any probability density p we have

∥Tmp − u∥1 ≤
√
n∥Tmp − u∥2 ≤

√
nβm.
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Proof. Note that the first inequality is an immediate consequence of (8.12). So we focus on the
second inequality. We make use of the orthonormal basis B from Remark 8.11 yet again. Recall
that φ1(x) = 1/

√
n for all x ∈ V (X). Since p is a probability density and λ1 = 1 if follows that

⟨p ∣φ1 ⟩λ1φ1(x) = u(x) for all x ∈ V (X). Now we have

∥Tmp − u∥2
2 = ∣∣

n

∑
i=2

⟨p ∣φi ⟩λmi φi∣∣
2

2

=
n

∑
i=2

∣⟨p ∣φi ⟩∣2∣λi∣2m.

By the definition of β we have ∣λi∣ ≤ β for 2 ≤ i ≤ n. Thus

∥Tmp − u∥2
2 ≤ β

2m
n

∑
i=2

∣⟨p ∣φi ⟩∣2 ≤ β2m
n

∑
i=1

∣⟨p ∣φi ⟩∣2 = β2m∥p∥2
2,

where the last equality follows by Exercise 8.13. Since p is a probability density it follows that
∥p∥2

2 ≤ 1, and thus the statement follows.

Conclusion 8.15. Since β < 1, of course βm approaches zero as m gets larger. In Theorem 8.14,
m represents the number of walks from a vertex to another (adjacent vertex). It is clear then that
the number of steps needed to guarantee a truly random walk depends on how small β is. For
instance, consider the Winnie Li’s graph X =X(Fp2 ,Ξ2). In this case we have n = p2, k = p+1, and
β = 2

√
p/(p + 1). Taking m = 3, Theorem 8.14 reads17 as

∥T 3p − u∥1 ≤
8√
p − 1

.

In other words, in this case, after only three steps (for large p) the walk looks pretty random.

8.3 Hamming graphs

In Section 6 we defined the Hamming distance. In this section we make use of it to define (and then
study) a class of Cayley graphs commonly called Hamming graphs. In here we will discuss only
the binary case, though the general case is extremely similar. Let Sn denote that standard basis
of Fn2 , that is, Sn = {e1, . . . , en} where ei has 1 in position i and 0 else. Then, a binary Hamming
graph on n vertices is the Cayley graph Xn ∶= X(Fn2 , Sn). Thus, by definition, V (Xn) = Fn2 and
(x, y) ∈ E(Xn) iff dH(x, y) = 1. For n = 3 the binary Hamming graph X3 is given in Figure 1. Note

001 011

000
010

101
111

100 110

Figure 1: Binary Hamming graph X3.

that dH(x, y) equals the number of edges in the shortest path between x, y ∈ Fn2 .

17Be aware of the probability density p and the prime number p.
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We start by determining the spectrum of A(Xn). Since we are considering the binary case, the
second primitive root of unity is ω = −1. By Theorem 8.1 (see also Example 8.2 and Remark 2.4)
it follows that Spec(A(Xn)) = {λx ∣ x ∈ Fn2} where

λx =
n

∑
i=1

(−1)x⋅ei =
n

∑
i=1

(−1)xi = n − 2wtH(x). (8.13)

Theorem 8.16. As an immediate consequence of (8.13), the following hold.

(1) −n ∈ Spec(A(Xn)), and thus Xn is bipartite.
(2) Xn is Ramanujan iff 2 ≤ n ≤ 6.
(3) 0 ∈ Spec(A(Xn)) iff n is even.

We now discuss a generalization of Hamming graphs. Consider the Cayley graph Xn,r =
X(Fn2 , SH(r)) where as a symmetric set we use the Hamming sphere SH(r) ∶= {x ∈ Fn2 ∣ wtH(x) = r}.
Then Spec(A(Xn,r)) = {λx ∣ x ∈ Fn2} where λx = ∑y∈SH(r)(−1)x⋅y. To have a full description of the
eigenvalues assume wtH(x) = k. We have

λx = ∑
y∈SH(r)

(−1)x⋅y =
k

∑
i=0

(k
i
)(n − k
r − i

)(−1)i. (8.14)

Clearly λx = λy iff wtH(x) = wtH(y).

Example 8.17. Consider X3,2, that is, the graph with vertex set labeled by F3
2 and (x, y) is an

edge iff dH(x, y) = 2. The graph is given in Figure 2. Clearly X3,2 is disconnected. Using (8.14)
one computes

λ000 = 1,
λ100 = λ010 = λ001 = −1,
λ110 = λ101 = λ011 = −1,
λ111 = 1.

It follows (as one can also see from Figure 2) that X3,2 is not bipartite. It also follows that X3,2 is
Ramanujan.

000

011

110

101

111

100

010

001

Figure 2: The graph X3,2.

Exercise 8.18. Determine whether or not A(X5,2) is invertible. Determine the maximum r for
which A(X19,r) is invertible.

9 Solutions to Selected Exercises

In this section we will sketch solutions of some selected exercises. The aim is to give step-by-step
hints that will lead to a guided solution. Occasionally we will give complete solutions.
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Exercise 1.19. It is straightforward to check that the following map

Φ ∶ Z∗n Ð→ Aut(Zn), uz→ { fu ∶ Zn Ð→ Zn
x z→ ux

,

is an injective homomorphism. Thus it suffices to show that Φ is surjective. To that end, let
f ∈ Aut(Zn). Then f(1) =∶ x must be a unit in Zn. Thus the map f is of type fx for x ∈ Z∗n, that
is, Φ(x) = f .

Exercise 1.23. Since Zp is a domain 0 and 1 are inverses of themselves, and they are the only ele-
ments with this property. Thus, every element of the set {2,3, . . . , p − 2} can be paired up with its
inverse (again from the set). In other words 2⋯p − 2 = 1. It follows that (p−1)! ≡ p−1 ≡ −1(modp).

Exercise 2.19. Consider the following map

Φ ∶K⊥ Ð→ ̂̂G/K, g z→ { Φg ∶ Ĝ/K Ð→ C∗

χ +K z→ χ(g) .

You will verify that Φg is well-defined iff g ∈ K⊥. It also follows easily that Φ is injective. Now by

Theorem 2.6 we have ∣̂̂G/K ∣ = ∣Ĝ/K ∣ =K⊥. The statement now follows by Exercise 1.20.

(1) It is straightforward to verify that H ⊆ (H⊥)⊥ and K ⊆ (K⊥)⊥. Equality follows again by
Theorem 2.6.

(2) By Theorem 2.6 we have ∣G⊥∣ = ∣Ĝ⊥∣ = 1. The statement now follows.
(3) This is an immediate consequence of Ĝ⊥ = {0} from part (2) above.

Exercise 2.22.

(1) This follows immediately from the definition and associativity of composition.
(2) We will show only the forward direction. The backward direction follows from the forward

direction and the duality (9). However, you are encouraged to prove the backward direction
directly. We will show first that im f ⊆ ker g Ô⇒ im g∗ ⊆ ker f∗. You will verify first that
ker f ⊆ im g iff g ○ f = 0. Thus, by assumption, we have f∗ ○ g∗ = (g ○ f)∗ = 0∗ = 0, which in
turn yields the claim. Next, we show ker g ⊆ im f Ô⇒ ker f∗ ⊆ im g∗. Assume χ ∈ ker f∗, that
is, χ ○ f = εB. We are seeking ψ ∈ B̂ such that ψ = χ ○ g. The latter implies χ(b) = ψ(g(b))
for all b ∈ B. Define ψ ∶ im g Ð→ C, g(b) z→ χ(b). We show first that ψ is well-defined. As-
sume g(b) = g(b′). By the assumption ker g ⊆ im f , it follows that there exists a ∈ A such that
b − b′ = f(a). Now the well-definednesss follows by χ ○ f = εB. To conclude the argument use
Theorem 2.7.
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Exercise 4.7. We compute

f̂(χ1, . . . , χn) = ∑
(g1,...,gn)

f(g1, . . . , gn)(χ1, . . . , χn)(g1, . . . , gn)

= ∑
(g1,...,gn)

n

∏
i=1

fi(gi)χi(gi)

=
n

∏
i=1

∑
gi∈Gi

fi(gi)χi(gi)

=
n

∏
i=1

f̂i(χi).

Exercise 4.8. Recall that we identify g with the evaluation map evg. With this identification we
have

̂̂f(g) = ̂̂f(evg) = ∑
χ∈Ĝ

f̂(χ)evg(χ)

= ∑
χ∈Ĝ

∑
x∈G

f(x)χ(x + g)

= ∑
x∈G

f(x) ∑
χ∈Ĝ

χ(x + g)

= ∣G∣f(−g),

where the last equality follows from (2.10).

Exercise 4.9.

(1) We need to show that for each character there exists an eigenvalue λ ∈ C such that Tgχ = λχ.
But for all x ∈ G we have Tgχ(x) = χ(x + g) = χ(g)χ(x). In other words χ is an eigenvector
corresponding to the eigenvalue χ(g) ∈ C.

(2) The second part should be obvious. For the first part we have

T̂gf(χ) = ∑
x∈G

Tgf(x)χ(x) = ∑
x∈G

f(x + g)χ(x)

= ∑
y∈G

f(y)χ(y − g) = ∑
y∈G

f(y)χ(y)χ(g)

= χ(g)f̂ .

(3) This follows immediately from the definition of convolution and Tg.

Exercise 6.4.

(1) Hint: Use Remark 2.4 along with the definitions of the dual group and dual code.
(2) By definition, G is a generating matrix for C iff C = {xG ∣ x ∈ Fk2}. Also by definition, H is a

parity check matrix for C iff C = {x ∈ Fn2 ∣HxT = 0}. But by the definition of the dual code

C⊥ = {x ∈ Fn2 ∣ c ⋅ x = 0 for all c ∈ C}
= {x ∈ Fn2 ∣ GxT = 0},
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and thus G is a parity check matrix for C⊥. To show that H is a generating matrix for C⊥ it
suffices to show C⊥ = {xH ∣ x ∈ Fn−k2 }. Note that “ ⊇ ” follows easily. Now equality follows by
part (1) along with Theorem 2.6.

Exercise 7.11.

(1) Using the fact that the minimal polynomial of ω is xp−1 +⋯ + x + 1 it follows easily that

Z[ω] = {
p−2

∑
i=0

aiω
i ∣ ai ∈ Z} .

Now take x ∈ Z[ω] ∩Q, that is, x = n/m, m ≠ 0 and x = ∑p−2
i=0 aiω

i. This implies

(ma0 − n) + (ma1)ω +⋯ + (map−2)ωp−2 = 0.

It follows that mai = 0 for i = 1, . . . , p − 2. Since m ≠ 0 we conclude that x = a0 ∈ Z.
(2) Use binomial expansion and observe that the “middle” coefficients are divisible by q.

Exercise 7.14. Recall that we solved this exercise by following the hints of the book. In here we
give an alternative solutions that uses Gauss Lemma (that you encouraged to prove).

Gauss Lemma (in number theory). Let p be an odd prime and assume a is not divisible by p.
Consider the least residues modulo p of the integers a,2a, . . . , ((p − 1)/2)a. Then

(a
p
) = (−1)n,

where n is the number of residues (from above) greater than p/2.

Back to the solution. We first distinguish two cases: p ≡ ±1(mod 8) and p ± 3(mod 8). We focus
on the first case. The second follows similarly. Note first that if p ≡ ±1(mod 8) then (p2 − 1)/8 is

even. So in this case we need to show (2

p
) = 1. We now focus on the subcase p ≡ 1(mod 8), that

is, p = 8k + 1. Apply Gauss Lemma for a = 2. Thus we look at the least residues modulo p of
2,4,⋯, p− 1. It is easy to see that in this case there are 2k of such numbers greater than p/2. Thus
the result follows. The other (three) cases are extremely similar.

Exercise 8.10. The complete graph in n vertices Kn is the Cayley graph X(Zn,Zn − {0}). Note
that A(Kn) = J − I where J is the all-one matrix. It is easy to see that the eigenvalues of A(Kn)
are n − 1 with multiplicity 1 and −1 with multiplicity n − 1. Clearly Kn is Ramanujan for n ≥ 3.
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10 Written Assignment

Instructions: The assignment is due Tuesday, July 24. You should provide well-written, complete,
and detailed answers. You may use additional resources, both human or electronic. However, you
must have your own write-up and acknowledge any help used. You are encouraged to use a word-
processing software.
Preamble: In this written assignment we will focus on the kernel of some “special” characters,
called generating characters. For the curious reader, behind the scenes we will be considering some
special instances of finite Frobenius rings using a character-theoretic approach. In particular, we
will focus on finite abelian groups that arise as the additive group of a finite ring.

Exercise 10.1. Consider Z8. Recall that Ẑ8 = {χ0, . . . , χ7}, where χi’s are as in the proof of
Theorem 2.1(1). Then do the following.

(1) Compute kerχi for 0 ≤ i ≤ 7. Verify that kerχ0 ∩ ⋯ ∩ kerχ7 = {0}; see also equation (2.7) and
Exercise 2.19.

(2) For what i’s do we have kerχi = {0}? What can you say about i ∈ Z8?
(3) Generalize (and prove) your findings to Zn for any n.

Exercise 10.2. Let G be the additive group of the ring of two-by-two matrices over Z2. For
A = (aij) ∈ G, let tr(A) = a11 + a22 denote the trace of A. For each A ∈ G, define

χA ∶ GÐ→ C∗, B z→ (−1)tr(AB
T),

where BT is the transpose of B. Do the following.

(1) Show that χA ∈ Ĝ and Ĝ = {χA ∣ A ∈ G}.
(2) Compute kerχI , where I is the identity matrix.
(3) In Ĝ define a “scalar-multiplication” by (A ⋅ χ)(B) ∶= χ(BA) for all A ∈ G and χ ∈ Ĝ. For each

M ∈ G define ΦM ∶ GÐ→ Ĝ, Az→ A ⋅ χM . Do the following.

(i) Show that ΦM is a module homomorphism, that is, ΦM satisfies

ΦM(A1 +A2) = ΦM(A1) +ΦM(A2)
ΦM(A1A2) = A1 ⋅ΦM(A2)

for all A1,A2 ∈ G.

(ii) Show that ΦI is bijective. (Hint: You might find it useful to show first that if tr(AB) = 0
for all B ∈ G then A = 0.)

(iii) Show that if A is invertible then ΦA is bijective.

(iv) A tiny challenge (optional): Is the converse of (iii) true?
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