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My research interests span across mathematics, computer science, and engineering. I have worked
on algebraic coding theory [11, 12, 21, 25], quantum computation [22, 27, 29, 30], wireless commu-
nications [19,26,28,36–38], and online privacy and security [1–5].

A portion of my PhD work is described in Sections 1 and 2.1. Section 2.2, although through the
lenses of quantum computation, is in many ways a follow-up work. Section 3 describes my work
in wireless communications. Section 4 describes the use of quantum computation in improving
security and privacy of distributed data centers, whereas Section 5 deals with quantum error-
correction. Finally, Section 6 describes two projects with undergraduate students.

The intent of this statement is to describe my current research interests in a broader sense. For
more details about any of the research directions, feel free to email me at tefjol.pllaha@unl.edu.

1 Algebraic Coding Theory

Coding Theory deals with erroneously transmitted data over a noisy channel. Eliminating the
noise is typically not an option. In fact the only efficient option is to make the data noise-proof,
and this is done by adding redundancy. Coding Theory keeps under control the cost of the
added redundancy, and this is achieved by efficient coding tools that also allow efficient decoding
algorithms. Classically, a code C of length n is an additive subgroup of Fn

2 . The binary field
F2 is the alphabet, and thus C is a binary code. Elements of C are called codewords. A code
is endowed with the Hamming distance, which counts the number of coordinates in which two
codewords differ.

Algebraic Coding Theory considers codes with additional structure. The alphabet is typically
a finite field Fq, and a code is an Fq-subspace of Fn

q , called a linear code. For a linear code
we can talk about the Hamming weight of a codeword as the Hamming distance from the all-
zero codeword. In other words, the Hamming weight counts the number of nonzero coordinates
of a codeword. The main invariant of a code is the minimum distance — it characterizes the
error-correcting capabilities of the code. Therefore, the goal is to find codes with large minimum
distance while keeping the size of the code under control. The advantage of linear codes is that
the minimum distance coincides with the minimum weight.

One can generalize the idea even further. The alphabet can be taken to be a finite left (or
right) R-module A, where R is a finite ring. In this case, a linear code is just a left submodule of
An. The first step toward this generalization is to take A := Z/dZ viewed as a module over itself.
Hence, linear codes over rings are an interesting special case of codes over modules. Another
interesting special case is to consider field extensions E/F . In this context, the alphabet is E and
codes consist of F -linear subspaces of En. In the case Fpn/Fp we get the so-called additive codes.
Not only do they form an important class of codes on their own, but they also link with Quantum
Information Theory and Quantum Error-Correcting Codes when n = 2. These generalizations
are not merely a mathematical wonderment, but instead, they provide rather sophisticated tools
for creating record-breaking codes.

An isometry is intended to capture the sameness of two codes. Thus, we would want an
isometry to preserve the algebraic structure of the code as well as the weight function ω : An → Q
with which the code is endowed. Along with the Hamming weight, other important weights
include the homogeneous weight and the Lee weight. In [20], J. F. MacWilliams completely
characterized isometries of binary linear codes with respect to the Hamming weight. It turned
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out that the classification of codes is strongly connected to so-called Frobenius alphabets [17]
and their rich character-theoretic duality [11,39,40].

Finite Frobenius rings are very close to finite fields [9], and similarly, finite Frobenius modules
and bimodules are very similar to vector spaces [16, 24]. In fact, these algebraic structures can
be characterized as those alphabets for which the work of MacWilliams holds true. The main
insight here is Fourier analysis on finite abelian groups.

1.1 Equivalence of Codes

A notion of sameness is required for any structure. Consider block codes over some finite module
alphabet endowed with a weight function ω. As mentioned, for a notion of sameness one would
want the algebraic structure as well as the error-correcting capabilities to be preserved. Thus two
codes C, C′ are “the same” if there exists an isomorphism between the two that also preserves the
weight. We will refer to such a map as ω-isometry and to the codes as isometric. The latter
may be decorated with adjectives that display properties of the weight. These ideas can also be
approached with a categorical language, as in [6] and references therein, where objects are block
codes and morphisms are the linear maps that don’t increase the weight.

With a notion of sameness in place one considers the respective equivalence classes and seeks for
canonical representatives. The first step in doing so is to understand the structure of ω-isometries,
which it turns out to be a highly nontrivial task. One gains intuition by considering the (typically
easy) extremal case C = An. Namely, what is the structure of an ω-isometry f : An −→ An? This
leads to two immediate followup questions. Is the structure of an ω-isometry f : C ⊊ An −→ An

the same as the extremal case for any code C? And if not, how different is the structure? The
former was first asked and answered affirmatively by MacWilliams [20] for binary linear codes
with respect to the Hamming weight. Further generalizations led to MacWilliams Extension
Theorem and the Extension Property of an alphabet [40]. However, the answer is not always
affirmative; see [24, Chapter 5]. This fact, along with ideas discussed in [10], led Jay Wood to
the notions of isometry groups [41]. The key insight is to think of a code as a set of messages
M embedded in An via a linear injective map Λ, called encoding. Then one studies isometries
of the code C := Λ(M) via automorphisms of the information module M . More specifically,
given a code C along with an information module M and encoding Λ, one defines

Isoω(C) = {f ∈ Aut(M) | ω(Λ(f(m))) = ω(Λ(m)) for all m ∈ M}. (1)

Then, inside Isoω(C) one identifies the subgroup Monω(C) of all automorphisms that are restric-
tions of ω-isometries of An. The terminology here stems from the fact that isometries of An are
monomial maps. Whenever MacWilliams Extension Theorem is true the two groups are the same.
Otherwise one wonders how big the gap could be and what subgroups of Aut(M) can be realized
as isometry groups. It turns out that the gap can be as big as possible [41]. These considerations
are closely related with the symmetries of the weight ω and tools from group theory, e.g., the
closure of a group, play a central role.

2 Quantum Computation

Quantum computation emerged in early 80s when the first ideas of quantum computers started
to develop. Ever since, the field has attracted interests from engineers, physicists, and mathe-
maticians.

A quantum mechanical system is mathematically described by a two dimensional complex
Hilbert space (typically taken to be C2) called quantum bit or qubit, and its time evolution
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is described by unitary operators. In this computational model, a quantum circuit consists of a
sequence of operations each of which is either a quantum gate, characterized by a unitary matrix,
or a quantum measurement, characterized by a Hermitian matrix (i.e., an observable) [23].
Examples of simple but yet important gates are the bit flip and phase flip gates. The collection
of these gates forms the well-known Heisenberg-Weyl group, which in turn plays a crucial role
in quantum error-correction (QEC) [7, 32].

The Heisenberg-Weyl group, in fact, plays the role of an error group in quantum error-
correction. The commutativity structure of this group can be described in terms of binary sym-
plectic geometry. A large and useful class of QEC codes can be viewed as complex vector spaces
fixed by stabilizers, that is, by projective abelian subgroups of the Heisenberg-Weyl group [13].
In this compact description, a stabilizer is precisely a self-orthogonal (totally isotropic) subspace,
and thus much of the analysis can be done in finite arithmetic rather than complex/continuous
arithmetic.

The computational model above can be generalized to qudits, which would be described by
a d-dimensional complex Hilbert space, and corresponding generalized gates, measurements, and
Heisenberg-Weyl group. Interestingly, it turns out that the natural finite arithmetic that realises
the generalized Heisenberg-Weyl group as an error group is that of a finite Frobenius ring, and
the associated symplectic geometry. We exploit this exciting connection to study generalized
stabilizers and corresponding QEC codes in [12]. With the correct set-up, we show that, as
expected, the error-correcting capabilities are determined by the Frobenius alphabet.

2.1 The Clifford Group

The Clifford group is defined as the automorphism group of the Heisenberg-Weyl group, and
it turns out to coincide with the normalizer of the latter. Thus, an automorphism acts by
conjugation. This simple observation is crucial in QEC because conjugation is well-behaved on
stabilizers. Exploiting the connection with symplectic geometry, elements of the Clifford group
(which are huge complex matrices) can be identified with binary (or d-ary in the generalized case)
symplectic matrices. If C is a symplectic self-orthogonal subspace, in analogy with (1), we can
define two isometry groups:

MonSL(C) := {f ∈ Aut(C) | f is the restriction of a symplectic monomial map},
Symp(C) := {f ∈ Aut(C) | f is a symplectic isometry}.

(2)

In [25, Example 4.19] we give an explicit example that shows MonSL(C) ⊊ Symp(C). Moreover,
using ideas from [41] and taking extra care of self-orthogonality, we show that this gap can be
as big as possible. Namely, given two groups H1 ⊊ H2, that satisfy some necessary conditions
(see [25, Prop. 4.11]), then there exists a symplectic self-orthogonal subspace C such that H1 =

MonSL(C) and H2 = Symp(C).
It is worth mentioning that, in the background, we are dealing with stabilizers and their

fixed spaces, which have their own notion of equivalence. Interestingly, all this work is strongly
connected with [11] in which we also studied isometries of codes but in a classical setting.

2.2 The Clifford Hierarchy

In 1999, Gottesman and Chuang demonstrated that universal quantum computing can be per-
formed just by using the quantum teleportation protocol if one has access to certain standard
resources — Bell-state preparation, Bell-basis measurements, and arbitrary single-qubit rota-
tions [15]. They defined the Clifford hierarchy as part of their proof, and this has proven
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to be a useful characterization of a large set of unitary operations both in theory and prac-
tice. In fact, in their teleportation model of computation, the level of a unitary in the hierarchy
can be interpreted as a measure of complexity of implementing it. Furthermore, this model is
closely related to the currently widespread scheme of distilling “magic” states and injecting them
via teleportation-like methods in order to fault-tolerantly execute unitary operations on qubits
encoded in a quantum error-correcting code. By definition, the Heisenberg-Weyl and Clifford
groups are the first and second level of the hierarchy respectively. Then the kth level is defined
recursively as those unitaries that conjugate the Heisenberg-Weyl group to the (k − 1)st level.

The structure of the Clifford hierarchy remains still unknown. In [27] we make significant
progress towards a complete characterization. We focus primarily on the third level and show
that every third level element is supported on a maximal abelian group of the Heisenberg-Weyl
group. Since the Clifford group is a subset of the third level, the result still applies and this can
be leveraged in circuit design and significant complexity reduction. For this we use the notion of
the support of a unitary matrix. First, the set of Hermitian matrices EN (N = 2m, where m is
the number of qubits) in the Heisenberg-Weyl group HWN forms an orthonormal basis for the
vectors space MN (C) of N ×N complex matrices with respect to the Hermitian inner product

⟨M |N ⟩ := 1

N
Tr(M†N). (3)

Thus, any matrix M ∈ MN (C) is a linear combination of elements in EN . The support of M

consists of those basis matrices that show up on the linear combination, namely,

supp(M) := {E ∈ EN | ⟨E |M ⟩ ̸= 0}. (4)

We show in [27] that, rather remarkably, the support of Clifford matrices is always a commutative
subgroup of HWN , that is, a stabilizer. We also show that, up to a rotation, the same holds
true for the third level of the Clifford hierarchy. This in turn implies several previously known
structural results, such as the so-called semi-Clifford conjecture.

Finding the support of a matrix, while straightforward, is computationally expensive. In [30]
we give a fast algorithm for computing the support of a Clifford matrix. For this we use a
novel graphical approach on the binary symplectic group Sp(F2; 2m). We are currently working
on implementing this new approach to achieve fault-tolerant quantum computation as well as
exploring efficient algorithms for higher levels of the Clifford hierarchy (especially third level).

3 Fifth Generation (5G) Wireless Communications

One of the challenges/promises of 5G wireless communication is to enable massive machine-type
communications (mMTC) in the Internet of Things (IoT), in which a massive number of low-cost
devices sporadically and randomly access the network. In this scenario, users are assigned a
unique signature sequence which they transmit whenever active. A twin use-case is unsourced
multiple access where a large number of messages is transmitted infrequently. Polyanskiy [31]
proposed a framework in which communication occurs in blocks of N channel uses, and the task
of a receiver is to identify correctly L active users (messages) out of 2B with one regime of interest
being N = 30, 000, L = 250, and B = 100.

The mathematical model of this use-case translates as follows. An active user uℓ transmits its
unique signature suℓ

. But, since there would be multiple simultaneous active users, the receiver
will receive a superposition of these signatures, perturbed by some Gaussian noise, that is

s =

(
L∑

ℓ=1

cℓsuℓ

)
+ n, cℓ ∈ C,n ∈ CN . (5)
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The task is to discover the active users, that is, determine {u1, . . . , uL} given s.
Given the massive number of to-be-supported (to-be-encoded) users (messages), the design cri-

teria are fundamentally different, and one simply cannot rely on classical multiple-access channel
(MAC) solutions. For instance, interference is unavoidable since it is impossible to have orthog-
onal signatures/codewords. Thus the challenge becomes to design highly structured codebooks
of large cardinality along with a reliable and low-complexity decoding algorithm. The perfor-
mance of a collection of signatures S = {si}Mi=1 ⊂ CN is governed by the worst-case coherence
µ(S) = maxi ̸=j |s†isj |, or equivalently by the minimum chordal distance δc(S) =

√
1− µ2(S).

Thus, we are seeking for a large number of unit vectors in CN that are sufficiently separated, and
in the background we are dealing with Grassmannian packings.

In [29] we introduce Binary Subspace Chirps, as a codebook of complex Grassmannian lines
of large cardinality and good distance properties, which makes them good candidates for mMTC.
This claim is backed up by the fact that the codebook is a natural extension of Binary Chirps [18],
which have been proven very useful in various applications. Interestingly, the codebook can be
characterized as a collection of Clifford matrices (discussed in Section 2). We fully exploit this
connection in [28] to construct a fast and reliable decoding algorithm in a multi-user scenario.
What remains to be seen is the reliability and stability of the algorithm in a massive setting as
proposed by Polyanskiy.

As mentioned, the devices used in mMTC are low-cost. These are typically simple sensors
with one transmit antenna and very little power available. However, there are important scenarios
(such as industrial automation, intelligent transportation, and remote healthcare (surgery), to
name a few) where Ultra-Reliable Low-Latency Communication (URLLC) is needed. It is obvious
that errors in these applications can be fatal, and that is why extra power and complexity is
traded for ultra reliability. In [38] we consider the case where users/devices have multiple transmit
antennas and show that reliability can be improved significantly. Although this is a vastly different
scenario from mMTC, our main insight still comes from there. Recall that in that case the
devices had one transmit antenna and would transmit a sequence/signature which we modeled as
a Grassmannian line. We model the multi-antenna transmission as a Grassmannian subspace of
dimension equal to the number of transmit antennas. Namely, if the active user is transmitting
with nt antennas and the receiver receives with nr antennas then (5) reads as

s =

(
L∑

ℓ=1

suℓ
cℓ

)
+ n, cℓ ∈ Cnt×nr , suℓ

∈ CN×nt , n ∈ CN×nr . (6)

The goal is again to recover the active users {u1, . . . , uL} given s, and additionally, design sig-
natures that guarantee full recovery. Statistical analysis of this use-case motivates the following
definition [38].

Definition 1. A signature code C ⊂ MN×nt
(C) is called well-balanced if for every si ∈ C we

have s†isj = ci,jxi,j , where xi,j is an nt × nt unitary matrix and ci,j is a scalar. The signature
code will be called ε-well-balanced if |ci,i| = 1/nt and |ci,j | ≤ ε for i ̸= j.

This newly introduced notion can be thought of as a generalization of mutually unbiased bases.
In fact, using this intuition, we provide an explicit construction, which we then test in simulations.
The performance is precisely as expected and we gain orders of magnitude in reliability.

3.1 Modular Quantization for mMIMO Communication

Massive Multiple-Input Multiple-Output (mMIMO) with a very large number of antennas at
the transmission station is one of the key components in the 5G New Radio (NR). This type of
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communication relies on the availability of high channel state information (CSI) that is fed back
from the user to the station. However, with the large number of antennas Nt at the station, the
complexity of reliable feedback becomes prohibitively high. The complexity continues to grow
exponentially in a multi-user scenario. Each of the U users has their own channel hu ∈ CNt×1,
and collectively there is a channel matrix H ∈ CNt×U . The transmission station will send to all
the users

y = HZx+ n,

where x ∈ CU×1 is the vector of information, n represents noise, and Z is a (to-be) designed beam
so that each user u receivers the intended information xu ∈ C. The beam Z is formed (a.k.a,
beamforming) using real-time CSI feedback information from each user. The covariance matrix
(and its eigenvalue decomposition)

R = hh† = UΛU†

is used to handle complexity. The matrix Σ = diag(σj) of the singular values of
√
R is used for

complexity reduction. The key idea is that instead of working with the CSI vector hu, one works
with

cu = Σ−1U† hu.

The order induced by Σ selects the K dominant eigenvectors UK , and cu can be reliably approx-
imated by Σ−1

K U†
K hu ∈ CK×1. To proceed with low-complexity feedback, one uses equidistant

points in the Grassmannian GC(K, 1) of desired granularity.
In [19], we propose a novel approach where the eigenvectors {u1, . . . ,uK} are sequentially

quantized (from the dominant to Kth dominant) with an adaptive granularity based both on
dominance as well as on K. Simulations have shown that this approach yields considerable
performance improvement. Further improvements can be achieved by using an orthonormalized
version of UK instead of UK itself.

4 Security and Privacy with Quantum Resources

Online activity and digital footprints are increasing exponentially, and this comes along with
significant risks. Luckily, there is also an increasing awareness, and tech companies are stepping
up to address these issues. A step in the right direction is the introduction of anonymization and
differential privacy. Another important step in the right direction are data protection laws.

In a typical online activity, there is a user that sends a request through a network to a
server about certain information. The server recognizes the request and replies with the relevant
information. In this scenario, there are two main risks: one from the user prospective and
another from the server prospective. In the former, the user would want privacy, meaning that
the information requested remains unknown to the server. Yet somehow, the server should be
able to reply with the relevant information without knowing what information is being delivered.
This is referred as Private Information Retrieval (PIR) and was first introduced in the seminal
work [8]. Additionally, the user may want anonymity, meaning that the server doesn’t know
the identity of the user during the exchange. In the latter type of risk, the server (but also the
user) would want security, meaning that the information delivered is robust against malicious
third parties.

In recent years, PIR has gained renewed interest in the setting of distributed storage systems
(DSSs) where the servers are storing possibly large files xi ∈ Fβ×k

q , i = 1, . . . ,m. To protect from
data loss in the case of the failure of some number of servers, such systems commonly employ
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either replication, where all servers store all files completely, or erasure-correcting codes, where
each server stores specific linear combinations of symbols of each file, as depicted below. A k×n

generator matrix GC of an [n, k] error-correcting code C determines what linear combinations of
symbols from each file are stored in each server.

x11,1 · · · x11,k
... . . . ...

x1β,1 · · · x1β,k
...

...
...

xm1,1 · · · xm1,k
... . . . ...

xmβ,1 · · · xmβ,k


·GC =



y11,1 · · · y11,n
... . . . ...

y1β,1 · · · y1β,n
...

...
...

ym1,1 · · · ym1,n
... . . . ...

ymβ,1 · · · ymβ,n



file 1

file m

server1 servern

Not only is this new setting commercially important, but it is also mathematically challenging
and interesting. There exist many PIR schemes for various scenarios, but most of them are not
capacity-achieving in the sense that they are not the best possible. More importantly, in many
cases the capacity is not even known.

We consider PIR in a scenario where servers share some quantum resources and use them
collaboratively to improve the capacity. We refer to this scenario as quantum PIR (QPIR). This
was first introduced and studied in [33,34] for replicated storage (meaning that every server stores
a copy of each file). It should be stressed that replicated storages have a massive overhead in the
sense that it is absolutely not necessary that each server stores a copy of each file. For this reason
replicated storages are impractical and are substituted with coded (erasure-correcting) storages.
In [1, 2] we construct a QPIR scheme for a coded storage. Additionally, the scheme allows even
colluding servers (where some servers may exchange information as an attempt to threaten
privacy). Using the stabilizer formalism [13], we generalized the scheme for distributed/coded
storages in [3] and computed the capacity in [5].

4.1 A New Approach: N-Sum Protocol

This new approach leverages the extremely simple 2-sum protocol [33] to first construct an N -sum
box, which we then further leverage in distributed computing [4]. It is worth pointing out im-
mediately that the technical foundations of the N -sum box are not new, indeed the construction
draws upon the well-understood stabilizer formalism in quantum coding theory, and most of the
technical details of the generalization from 2-sum to N -sum are also contained in the works of
Song and Hayashi on Quantum Private Information Retrieval. Nevertheless, the crystallization
of the black-box abstraction holds significant promise for researchers in the classical information
and coding theory domains. These researchers, though less acquainted with stabilizer codes and
quantum coding theory, can still make valuable contributions to comprehending the fundamen-
tal boundaries of transmitter-side entanglement-assisted distributed classical computation over
quantum multiple access (QMAC) networks. This is achieved through the utilization of the afore-
mentioned classical abstraction, which effectively conceals the intricate details of the underlying
quantum circuitry. For example, wireless researchers with little background in quantum codes
may recognize the N -sum box as the familiar MIMO MAC setting illustrated via an example in
Figure 1. The main distinctions from the multiple antenna wireless setting are 1) that the channel
is deterministic (noise-free), defined over a finite field (Fq) rather than complex numbers, and 2)
that instead of being generated randomly by nature, the channel matrix can be freely designed as
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long as it satisfies some weak necessary conditions. This is because it is shown in this work that
feasible N -sum box transfer functions are precisely those matrices M ∈ FN×2N

q that satisfy the
said conditions. Thus, from a wireless perspective, the problem of coding for the QMAC becomes
conceptually equivalent to that of designing a coding scheme as well as the channel matrix for
a MIMO MAC subject to given structural constraints imposed by the N -sum box abstraction,
such that the resulting MIMO MAC is able to efficiently achieve the desired linear computation
‘over-the-air’ (actually, through quantum entanglement). The efficiency gained by ‘over-the-air’
computation in this (constrained) MIMO MAC translates into superdense coding gain over the
QMAC.

Tx1
x1

x4

Tx2
x2

x5

Tx3
x3

x6

R
ec

ei
ve

ry1
y2
y3

y1y2
y3

 =

M1,1 · · · M1,6

...
...

...
M3,1 · · · M3,6



x1

x2

...
x6


y ∈ F3×1

q ,x ∈ F6×1
q ,M ∈ F3×6

q

M⊤JM =, rk(M) = 3 (SSO)

[Quantum Comm. Cost: 3 qudits]

Figure 1: The N -sum box is illustrated as a MIMO MAC for N = 3.

The N -sum box is intended to be useful primarily as a tool for exploring the information-
theoretic capacity of Fq-linear classical computations over an ideal QMAC, with the potential to
shed new light into the fundamental limitations of superdense coding and quantum entanglement.
As with other tools that information theorists have at their disposal, it is difficult to predict
in advance if the N -sum box abstraction will turn out to be sufficient to construct capacity
achieving schemes. Indeed the linear computation capacity of a MAC is a challenging problem
even in the classical setting, especially for vector linear computations. Nevertheless, we are
cautiously optimistic that the stabilizer-based construction exhausts the scope of the N -sum
box functionality for Fq-linear computations. The optimistic outlook is supported by our prior
works on capacity of QPIR [1,5] where N -sum boxes have been implicitly employed for capacity-
achieving schemes, as well as a recent follow-up work that utilizes the N -sum-box abstraction
from this work, to find the capacity of sum-computation over the QMAC [42].

Last but not the least, even when an exact capacity characterization is beyond reach, a fruitful
strategy is to utilize the N -sum box to design the best possible schemes allowed by the abstrac-
tion. In general the constraints of the abstraction may lead to entirely new schemes. However,
certain applications of interest, of which QPIR is a prime example, have classical solutions with
specialized structures that naturally resonate with the constraints of the N -sum boxes. For such
applications, it can be particularly insightful to find ways to efficiently quantumize the classical
solutions, leading not only to good quantum coding schemes but also a better understanding of
the role of these constraints for linear computations. Notably, we introduced such quantumization
in [1] by blending the existing classical schemes with the 2-sum protocol. In this work, to further
illustrate this aspect, we provide another instance by quantumizing classical cross-subspace align-
ment (CSA) codes into QCSA codes. CSA codes have been used in a variety of schemes ranging
from PIR to secure distributed batch matrix multiplication (SDBMM). Therefore, QCSA codes
naturally open the door for the general quantum MDS-coded PIR setting as well as quantum
SDBMM.
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5 Quantum Low-Density Parity-Check Codes

Since the discovery of the first quantum error correction code [32], there has been tremendous
progress in code design. Many of the existing quantum codes leverage the vast existing literature
in classical coding theory. Low-density parity-check (LDPC) codes are well-established in classical
coding theory. Their quantum analogues, quantum LDPC (QLDPC) codes, gained popularity
due to Gottesman’s breakthrough discovery [14], showing that constant overhead can be achieved
with constant encoding rate. For this reason, QLDPC codes are current candidates for realizing
scalable fault-tolerant quantum computation. Like their classical counterparts, QLDPC codes
are amenable to low-complexity iterative decoding algorithms, such as syndrome-based iterative
decoding.

An important class of stabilizer codes are the Calderbank-Shor-Steane (CSS) codes [7, 35],
defined by a pair of classical linear codes CX, CZ ⊂ Fn

q such that C⊥
X ⊂ CZ. This condition forces

two respective parity check matrices HX and HZ to satisfy HZH
T
X = 0 and thus the matrix

H =

(
HX 0

0 HZ

)
satisfies the necessary condition HXH

T
Z + HZH

T
X = 0, and it defines a stabilizer code. A Pauli

error acting on n qubits can be represented as e = (eX, eZ). The corresponding error syndrome is

σe = (σX, σZ) =

(
HX 0

0 HZ

)
⊙ e = (HZe

T
X ,HXe

T
Z ).

The goal of a syndrome-based decoder is to estimate an error ê whose syndrome σê matches the
input syndrome σe.

While most work on decoder failure of QLDPC codes has focused on defining and identifying
trapping sets (that is, structures that force the decoder to diverge) of QLDPC codes, less have
characterized problematic graphical structures in trapping sets. Our work [22] aims to identify
classes of said structures.

Definition 2. An (a, b)-absorbing set A in the Tanner graph G of the code C is a subset of
variable nodes such that |A| = a, there are b odd degree vertices in the induced subgraph WA,
and every variable node v ∈ A has more even degree than odd degree neighbors in GA.

We show that for absorbing sets with b > 0, that is, when there exists at least one odd degree
node, the decoder will always get trapped. The more interesting case is when b = 0, and we
connect this case with degenerate errors, which constitute a unique feature of quantum coding.

6 Undergraduate Research

By its very nature, my research is highly accessible for a wide range of undergraduate students.
Most of my intended projects require little to no background which in turn allows students
to tackle core problems almost immediately. Additionally, part of my research deals with real
life applications, and this can be attractive to students with different research interests (e.g.,
pure math versus applied math, algebra versus combinatorics). As usual, to come up with
a solution to a real life problem one would not only need to “construct” a solution but also
implement it. This is a green light for students that would rather prefer a more computational
or programming approach, as well as for interdisciplinary research with computer science majors
and/or engineering majors.
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In Summer 2020, I supervised a research project for Kalle Volanto at Aalto University, who at
that time was an electrical engineering senior, while also working for a math major. The problem
we tackled was at a first glance very theoretical in nature – decomposition of certain binary
symplectic matrices, uniqueness of the decomposition and other related considerations – which in
turn has important connections with quantum computation. Despite this, the problem in hand
can be translated to simple graph theory language which is very accessible and visual. This
helped in gaining intuition, and eventually we not only solved the problem but also implemented
a fast algorithm [30].

In Summer 2022, I supervised a research project for Kolton O’Neal at UNL, who at the time
was a freshman math major. The problem we studied involved distributed matrix multiplication.
When the multiplications are carried across many distributed servers, security is a concern as
the servers might be curious about the matrix contents. Our goal was to improve the security
of current protocols by leveraging/utilizing quantum resources. We made significant progress by
coming up with relevant protocols, and Kolton is scheduled to disseminate the results in upcoming
conferences. While utilizing quantum resources helps improving and achieving security, it comes
with its own costs, and trade-offs remain to be explored in future projects.
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