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Some Milestones

Chor et al. 1995: Seminal paper on PIR.
e Privacy only achievable by downloading the entire database.
e PIR schemes for replicated databases.
e Impractical due to storage overhead.

Renewed interest from coded storages.

e Collusion, capacity, lower overhead...

Increased demand/awareness for privacy.

e Anonymization, differential privacy, data protection laws ...

Quest for practical solutions continues.



Coded Storage

m files x1,... x™ e Fng are encoded and stored on n servers by a
[n, k] storage code C.
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PIR with t-collusion (t-PIR)

Definition (t-PIR).
User privacy: Any set of at most t colluding nodes learns no
information about the index i of the desired file, i.e., the mutual

information
1(i; QX R, yr)=0, VY Tc[n],|T|<t.

Server privacy: The user does not learn any information about
the files other than the requested one, i.e.,

I QX RK. K)=0, Vj+K.

A scheme with both user and server privacy is called symmetric.
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Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

Number of bits in a file

Rpir = .
PIR Number of downloaded bits

The PIR capacity is the supremum of PIR rates of all possible
PIR schemes, for a fixed parameter setting.
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Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

Number of bits in a file

Rpir = — .
Number of downloaded bits

The PIR capacity is the supremum of PIR rates of all possible

PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with “entangled servers” and “quantum answers" .

Motivated by the work of Seunghoan Song and Masahito Hayashi

e arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
e Replicated storage with t = n—1 collusion.

e Goal: [n, k] coded storage with t = n— k collusion.



Ingredients for QPIR

e Quantum adaptation of existing schemes.

e Generalized Reed-Solomon codes
GRSk (e, v) = {(vif (i) 1cicn | F(x) e F¥[x]}.

e Quantum Computation.
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Ingredients for QPIR: Quantum Computation

Bell State |®) = (|00) + [11))/V/2.

Weyl Operator W(a, b) = X?Z>.
The PVM

B]F% = {B(a,b) = W1(37 b)’¢)<¢’W1(a, b)t ’ a,be FQ}
Two-Sum Protocol: Alice and Bob send the sum
(a1 + b1, az + bp) of their bits to Carol.
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A QPIR Example

e n =4 servers and [4,2]s - coded database with RS code
1 0 a® a
Ge = .
¢ ( 01 a o )

e Files: m files in x' € Fka
e =1 and k =2 (determined by encoding).
o x'=(x1,%).
e k also determines the number of rounds.

e Query index K, i.e., the requested file is x* = (x/<, x5%).



A QPIR Example: Entangled Servers

SERVER; SERVERy SERVER3 SERVER4

azz% + ax% ax} + a%%

oz + axl az + ozl
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A QPIR Example: Queries

e Generate two independent and uniformly random vectors
Zl, ZQ € FT

e Encode 73, Z> as codewords of the dual code:

(Q1, @2, Q3,Qs) = (Z£1,22) - Ger + €k 1

= [21,22,04221 + OéZQ,OéZl + 042222] +§K,1'

e Query Qs to server s.



A QPIR Example: Servers’ Response
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A QPIR Example: Servers’ Response

W (H,) W (H,) W (Hs) W (Hy)
@ - @ ‘ .
SERVER1 SERVER2 SERVER3 SERVER4
Bell measurement Bell measurement Operation on
with outcome Ga with outcome G SERVERy
SERVER| SERVER4

SERVER2

W(G2)

SERVER3

W(Gs)

Each server computes
Hs = {Qs|ys) € Fq = TF2.

Servers 1,4: W(H,),
W(H4) to Hi, Ha,
respectively.

Servers 2,3: W(Hs) to HL,
Bell measurement on

HE ® HE with outcome

Gs € F2, W(G;) to Hs.

Each server sends its qubit
to the user.
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A QPIR Example: Retrieval

e Measure Hy ® H3 to retrieve G = Gy + Gz (two-sum protocol).
K

e Apply W(G) to H4 and measure to retrieve x;' .
° Repeat everything to retrieve x2K and build the desired file
X2 = (Xl ’ K)-
Remark
Here we targeted servers 1&2 (systematic encoding). Since the
storage is MDS-coded, one can target any two (k in general)

SErvers.
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e User secrecy: queries @1, ..., Q4 independent of the index
K, two random vectors generated and encoded into queries =
at least three servers needed in order to retrieve the file
requested = 2-collusion.



A QPIR Example: Secrecy, Collusion, Rate

e User secrecy: queries @1, ..., Q4 independent of the index K,
two random vectors generated and encoded into queries = at
least three servers needed in order to retrieve the file

requested = 2-collusion.

e Server secrecy: obtained for any p because the received state
of the user is independent of the fragments xlg with i # K and
the measurement outcome G(P) is independent of any file.



A QPIR Example: Secrecy, Collusion, Rate

e User secrecy: queries @1, ..., Q4 independent of the index K,
two random vectors generated and encoded into queries = at
least three servers needed in order to retrieve the file

requested = 2-collusion.

e Server secrecy: obtained for any p because the received state
of the user is independent of the fragments xlg with i # K and
the measurement outcome G(P) is independent of any file.
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QPIR with n Servers

Query index: K € {1,...,m}
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Ingredients for t-QPIR

Star Product PIR scheme from Freij-Hollanti et al.

e Coded storage with storage code C.

e A retrieval code D that determines the privacy.

e CxD=((cid1,...,cndn) | ceC,deD)

e Scheme with rate (dc.p —1)/n that protects against dp: — 1

collusions.
Adapted Star Product scheme for t-QPIR
o Weakly self-dual codes.

Lemma

Let g be even with g > n. For any [n, k] GRS code C there exists
an [n, t] GRS code D such that their star-product S =C « D is an
[n, k +t—1] weakly self-dual GRS code.
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What's next?

QSDMM: Quantum Secure Distributed Matrix Multiplication
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