Laplacian Simplices II: A Coding Theoretic Approach

Tefjol Pllaha

Department of Mathematics University of Kentucky http://www.ms.uky.edu/~tpl222

AMS Sectional Meetings Ann Arbor, MI

*Joint with Marie Meyer

Department of Mathematics University of Kentucky

<ロ> <四> <四> <日> <日> <日</p>

2

Outline

Department of Mathematics University of Kentucky

A (1) > A (2) > A

.∋.) ∋

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

Department of Mathematics University of Kentucky

• Im • • Im •

Outline

1 (Ehrhart) Theory of simplices

- 2 Laplacian simplices
- **3** Reflexive Laplacian simplices

Department of Mathematics University of Kentucky

• Im • • Im •

Outline

1 (Ehrhart) Theory of simplices

- 2 Laplacian simplices
- **3** Reflexive Laplacian simplices

Department of Mathematics University of Kentucky

▲ 同 ▶ → ● ▶

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

- **3** Reflexive Laplacian simplices
- 4 Further research

Department of Mathematics University of Kentucky

 э

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices

4 Future research

Department of Mathematics University of Kentucky

向下 イヨト イヨト

э

(Ehrhart) Theory of simplices

A simplex ∆ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d).

Department of Mathematics University of Kentucky

• • = • • = •

(Ehrhart) Theory of simplices

A simplex Δ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.

Department of Mathematics University of Kentucky

A B > A B >

(Ehrhart) Theory of simplices

- A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.
- \blacksquare If $\bm{0}\in \Delta$ then the \bm{dual} of Δ is given by

Department of Mathematics University of Kentucky

< ∃> < ∃>

(Ehrhart) Theory of simplices

- A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.
- If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

$$\Delta^{\!\!\vee} := \{ \mathbf{x} \in \mathbb{R}^d \mid \mathbf{x} \, \mathbf{y}^{\!\!\mathsf{T}} \leq 1 ext{ for all } \mathbf{y} \in \Delta \} \,.$$

• The fundamental parallelepiped of Δ is

$$\mathsf{\Pi}(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \, \middle| \, 0 \leq \lambda_i < 1
ight\} \subseteq \mathbb{R}^{d+1}$$

Department of Mathematics University of Kentucky

(Ehrhart) Theory of simplices

- A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.
- If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

• The fundamental parallelepiped of Δ is

$$\mathsf{\Pi}(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \, \middle| \, 0 \leq \lambda_i < 1 \right\} \subseteq \mathbb{R}^{d+1}$$

• (Batyrev and Hofscheier):

$$\Lambda(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \ \left| \ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \right\}.$$

Department of Mathematics University of Kentucky

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

(Ehrhart) Theory of simplices

• $\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$

Department of Mathematics University of Kentucky

(E)

(Ehrhart) Theory of simplices

$${f A}(\Delta) \leq ({\Bbb Q}/{\Bbb Z})^{d+1}$$
 with addition

 $(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$

where $\{\bullet\}$ denotes the fractional part of a number.

Department of Mathematics University of Kentucky

向下 イヨト イヨト

э

(Ehrhart) Theory of simplices

•
$$\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$$
 with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

• The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \# \{ \mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i \}$$

Department of Mathematics University of Kentucky

向下 イヨト イヨト

э

(Ehrhart) Theory of simplices

•
$$\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$$
 with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

• The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\} \\ = \#\left\{\lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i\right\}.$$

Department of Mathematics University of Kentucky

同下 イヨト イヨト

э

(Ehrhart) Theory of simplices

•
$$\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$$
 with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

• The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$\begin{aligned} h_i &= \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\} \\ &= \#\left\{\lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i\right\}. \end{aligned}$$

• If $h^*(\Delta)$ is symmetric then Δ is called **reflexive**.

Department of Mathematics University of Kentucky

A (1) > A (1) > A

э

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices

4 Future research

Department of Mathematics University of Kentucky

3 ×

э

Laplacian simplices

• Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.

Department of Mathematics University of Kentucky

向下 イヨト イヨト

Laplacian simplices

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) | 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

Department of Mathematics University of Kentucky

- 4 回 ト - 4 回 ト

Laplacian simplices

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) | 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of $L_G(n)$, denoted Δ_G , is called the **Laplacian simplex associated to** G.

Department of Mathematics University of Kentucky

イロン 不同 とくほう イロン

3

Laplacian simplices

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) | 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of $L_G(n)$, denoted Δ_G , is called the **Laplacian simplex associated to** G.

The convex hulls of the rows of the Laplacian after removing any column are unimodularly equivalent.

3

Laplacian simplices

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) | 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of $L_G(n)$, denoted Δ_G , is called the **Laplacian simplex associated to** G.

- The convex hulls of the rows of the Laplacian after removing any column are unimodularly equivalent.
- $\operatorname{Vol}(\Delta_G) = n \cdot \tau(G).$

A (1) > A (1) > A

э

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices

4 Future research

Department of Mathematics University of Kentucky

- 4 回 ト - 4 回 ト

э

Reflexive Laplacian simplices

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then

$$\Lambda(\Delta_G) = \left\{ rac{\mathbf{x}}{n} \, \Big| \, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_n}[L(n) \mid 1]
ight\}.$$

Department of Mathematics University of Kentucky

Families of reflexive simplices

Department of Mathematics University of Kentucky

< 17 >

∃ → (4 ∃)

э

< ∃ >

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Department of Mathematics University of Kentucky

A B + A B +

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To whisker a graph G means to attach an edge and vertex to each existing vertex in G.

Department of Mathematics University of Kentucky

A B > A B >

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To *whisker* a graph G means to attach an edge and vertex to each existing vertex in G. To *star* a graph G means to attach an additional vertex with every vertex in G.

Department of Mathematics University of Kentucky

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To whisker a graph G means to attach an edge and vertex to each existing vertex in G. To star a graph G means to attach an additional vertex with every vertex in G.

Theorem (Meyer/P, 2018)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To *whisker* a graph G means to attach an edge and vertex to each existing vertex in G. To *star* a graph G means to attach an additional vertex with every vertex in G.

Theorem (Meyer/P, 2018)

• Note:
$$V(W^*(K_n)) = 2n + 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To *whisker* a graph G means to attach an edge and vertex to each existing vertex in G. To *star* a graph G means to attach an additional vertex with every vertex in G.

Theorem (Meyer/P, 2018)

• Note:
$$V(\mathcal{W}^*(K_n)) = 2n + 1, \tau(\mathcal{W}^*(K_n)) = (2n + 1)^{n-1},$$

Families of reflexive simplices

 (Braun/Meyer, 2017) Trees, odd cycles, and complete graphs yield reflexive Laplacian simplices.

Definition

To *whisker* a graph G means to attach an edge and vertex to each existing vertex in G. To *star* a graph G means to attach an additional vertex with every vertex in G.

Theorem (Meyer/P, 2018)

• Note:
$$V(\mathcal{W}^*(K_n)) = 2n + 1, \tau(\mathcal{W}^*(K_n)) = (2n + 1)^{n-1},$$

 $\operatorname{Vol}(\Delta_{\mathcal{W}^*(K_n)}) = (2n + 1)^n.$

▲ (四) ▶ (▲ 三) ▶

문어 문

Duality

• Recall the finite abelian group $\Lambda(\Delta_G)$.

Department of Mathematics University of Kentucky

< ∃ >

э

Duality

- Recall the finite abelian group $\Lambda(\Delta_G)$.
- Let A be a finite abelian group and let B be a subgroup. Denote := Hom(A, ℚ/ℤ) the Pontryagin dual of A.

Department of Mathematics University of Kentucky

< ∃ >

э

Duality

- Recall the finite abelian group $\Lambda(\Delta_G)$.
- Let A be a finite abelian group and let B be a subgroup. Denote := Hom(A, ℚ/ℤ) the Pontryagin dual of A. Denote

$$B^{\circ} = \{\chi \in \widehat{A} \mid \chi(b) = 1 \text{ for all } b \in B\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Duality

- Recall the finite abelian group $\Lambda(\Delta_G)$.
- Let A be a finite abelian group and let B be a subgroup. Denote := Hom(A, ℚ/ℤ) the Pontryagin dual of A. Denote

$$B^{\circ} = \{\chi \in \widehat{A} \mid \chi(b) = 1 \text{ for all } b \in B\}.$$

Theorem (Meyer/P, 2018)

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) \cong \Lambda(\Delta_G)^{\circ}.$$

Department of Mathematics University of Kentucky

A (1) > A (1) > A

э

Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices

4 Future research

Department of Mathematics University of Kentucky

(A) → (A) ⇒ (A)

3 x 3

Future research I: Unimodality

Department of Mathematics University of Kentucky

Future research I: Unimodality

Let G be the graph K_3 with a 7-edge path as a tail. Then

$$h^*(\Delta_G) = (1, 3, 3, 5, 3, 5, 3, 3, 1).$$

Department of Mathematics University of Kentucky

- ∢ ≣ ▶

э

Future research I: Unimodality

Let G be the graph K_3 with a 7-edge path as a tail. Then

$$h^*(\Delta_G) = (1, 3, 3, 5, 3, 5, 3, 3, 1).$$

Open Problem

Classify reflexive Laplacian simplices with unimodal h^* -vector.

Department of Mathematics University of Kentucky

イロン 不同 とくほう イロン

3

Future research II: Duality

Theorem (Meyer/P, 2018)

Let T_n and K_n denote any tree on n vertices and complete graph respectively. Then

 $\Lambda(\Delta_{K_n})^{\circ} \cong \Lambda(\Delta_{T_n}).$

Department of Mathematics University of Kentucky

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Future research II: Duality

Theorem (Meyer/P, 2018)

Let T_n and K_n denote any tree on n vertices and complete graph respectively. Then

 $\Lambda(\Delta_{K_n})^{\circ} \cong \Lambda(\Delta_{T_n}).$

Open Problem

Find pairs of graphs (on *n* vertices) (G, H) such that $\Lambda(\Delta_G)^{\circ} \cong \Lambda(\Delta_H)$.

Department of Mathematics University of Kentucky

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Future research II: Duality

Theorem (Meyer/P, 2018)

Let T_n and K_n denote any tree on n vertices and complete graph respectively. Then

 $\Lambda(\Delta_{K_n})^{\circ} \cong \Lambda(\Delta_{T_n}).$

Open Problem

Find pairs of graphs (on *n* vertices) (G, H) such that $\Lambda(\Delta_G)^{\circ} \cong \Lambda(\Delta_H)$.

• Note: A necessary condition is $\tau(G) \cdot \tau(H) = n^{n-2}$.

3

Future research III: h^* -vector of the dual

Let Δ_G be reflexive. Denote

$$h^*(\Delta_G) := \sum_{i=o}^n h_i x^{n-i} y^i.$$

Department of Mathematics University of Kentucky

伺 ト イヨト イヨト

э

Future research III: h*-vector of the dual

Let Δ_G be reflexive. Denote

$$h^*(\Delta_G) := \sum_{i=o}^n h_i x^{n-i} y^i.$$

Open Problem

Is there any relation between $h^*(\Delta_G)$ and $h^*((\Delta_G)^{\vee})$?

Department of Mathematics University of Kentucky

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Future research III: h^* -vector of the dual

Let Δ_G be reflexive. Denote

$$h^*(\Delta_G) := \sum_{i=o}^n h_i x^{n-i} y^i.$$

Open Problem

Is there any relation between $h^*(\Delta_G)$ and $h^*((\Delta_G)^{\vee})$?

Motivation: MacWilliams Duality and MacWilliams Identity.

Department of Mathematics University of Kentucky

▲ 御 → → 注→

э

э

Thank You!

Department of Mathematics University of Kentucky