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Frobenius Rings

R will denote a finite commutative ring with identity.

R̂ := Hom((R,+),C∗) will denote the character group.

R̂ ∼= R as groups.
R̂ is a R-module structure via

(r ·χ)(x) := χ(rx), for all r , x ∈ R and χ ∈ R̂.

R is called Frobenius if R R̂ ∼=RR as R-modules.

There exists χ ∈ R̂ such that R̂ = {r ·χ | r ∈ R}.
Such χ is called generating character.
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Basic Notions

Fix |R| = q and a generating character χ ∈ R̂.

Fix a ON-bais of Cq: B = {vx | x ∈ R}.
For a ∈ R, define two unitary transformations of Cq:

X (a) : vx −→ vx+a

Z (a) : vx −→ χ(ax)vx

For all n ∈ N, (Cq)⊗n ∼= Cqn . We use the ON-basis

B⊗n := {vx1 ⊗ · · · ⊗ vxn | (x1, . . . , xn) ∈ Rn}

For a = (a1, . . . , an) ∈ Rn define

X (a) := X (a1)⊗ · · · ⊗ X (an)
Z (a) := Z (a1)⊗ · · · ⊗ Z (an)

}
∈ U(qn)
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Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e

⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e

⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e

⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e ⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e ⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e ⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



Basic Notions

The n qubit quantum error basis is

En = {X (a) · Z (b) | a, b ∈ Rn}
= {X (a1)Z (a1)⊗ · · · ⊗ X (an)Z (an) | (a, b) ∈ R2n}

Let e = X (a)Z (b), e ′ = X (a′)Z (b′) ∈ En. Then

ee ′ = χ(b · a′)X (a + a′)Z (b + b′)

e ′e = χ(b′ · a)X (a + a′)Z (b + b′)

ee ′ = e ′e ⇐⇒ χ(b · a′ − b′ · a) = 1.

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a

is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.



The Pauli Group

Let char(R) = c .

Fix a Nth-PRU ω, where

N =

{
c if c is odd

2c if c is even

Definition

The n-th qubit Pauli Group associated to the error basis En is
defined as

Pn := {ωlX (a)Z (b) | (a, b) ∈ R2n, l ∈ Z}.

We have a group homomorphism

Ψ : Pn −→ R2n, ωlX (a)Z (b) 7→ (a, b)
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Quantum Stabilizer Codes

Definition

A subgroup S ≤ Pn is called a stabilizer group if it is abelian
and S ∩ ker Ψ = {I}.

A quantum stabilizer code (of length n over R) is

Q(S) := {v ∈ Cqn | ev = v , for all e ∈ S}

=
⋂
e∈S

eig(e, 1)

NOTE: S ⊆ C(Pn).

Theorem

Q(S) can detect all the errors outside C(Pn)− S .
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Quantum Stabilizer Codes

Definition

The symplectic weight of an error e = ωlX (a)Z (b) is

wts(e) := |{i | (ai , bi ) 6= (0, 0)}|.

The minimum distance of a quantum stabilizer code is

dist(Q(S)) := min{wts(e) | e ∈ C(Pn)− S}.
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Stabilizer Codes

Definition

A submodule C ≤ R2n is called a stabilizer code if there exists a
stabilizer group S such that C = Ψ(S).

Theorem (Gluesing-Luerssen/P, 2017)

A submodule C ≤ R2n is a stabilizer code iff C ⊆ C⊥.

Definition

The symplectic weight of a codeword is
wts(a, b) := |{i | (ai , bi ) 6= (0, 0)}|.
The minimum distance of a stabilizer code is

dist(C ) :=

{
min{wts(a, b) | (a, b) ∈ C⊥ − C} if C ( C⊥

min{wts(a, b) | (a, b) ∈ C⊥ − {0}} if C = C⊥
.
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Symplectic Isometries

Let A ≤ R2n be a submodule. A linear map f : A→ R2n is called a
symplectic isometry if for all x , y ∈ R2n

wts(x) = wts(f (x)) and 〈x | y〉s = 〈f (x) | f (y)〉s.

Example

1 For a permutation σ ∈ Sn, (a, b) 7→ (σ(a), σ(b)).

2 (a, b) 7→ (· · · , ai−1, bi , ai+1, · · · , · · · , bi−1,−ai , bi+1, · · · ).
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Symplectic Isometries of R2n

Question

What is the structure of symplectic isometries of R2n?

To answer this question we transfer the problem on (R2)n via
the change of coordinates

γ : R2n → (R2)n, (a, b) 7→ (a1, b1 | · · · | an, bn).

The symplectic weight now becomes the Hamming weight on
R2, that is, wtH(x) = wts(γ

−1(x)) for all x ∈ (R2)n.

Define 〈x | y〉 := 〈γ−1(x) | γ−1(y)〉s for all x , y ∈ (R2)n.

For a linear map f : R2n → R2n, denote f̃ := γ ◦ f ◦ γ−1.
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Symplectic Isometries of R2n

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : R2n → R2n is a symplectic isometry iff the map
f̃ : (R2)n → (R2)n is given by

f̃ = diag(A1, · · · ,An)(P ⊗ I2),

for Ai ∈ SL2(R).

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries f : A ( R2n → R2n?

Although this question is interesting for submodule A ≤ R2n,
we are interested on stabilizer codes.
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Symplectic Isometries of Stabilizer Codes

Let C ≤ R2n be a stabilizer code. We define two groups:

MonSL(C ) := {f ∈ Aut(C ) | f is monomial}
Symp(C ) := {f ∈ Aut(C ) | f is symplectic isometry}

MonSL(C ) ⊆ Symp(C ).

Fact: MonSL(C ) ( Symp(C ).
Reason: Explicit construction of a stabilizer code that does
not admit a monomial symplectic isometry.

Open Problem

How different can the groups MonSL(C ) and Symp(C ) be?
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Theorem (P, 2018)

For any groups H ≤ K that satisfy some necessary conditions
there exists a stabilizer code such that H = MonSL(C ) and
G = Symp(C ).
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Minimum distance of a Stabilizer Code

Let R be a local Frobenius ring with maximal ideal m, and
k := R/m the residue field.

Let C ≤ R2n be a free stabilizer code. Denote C ≤ k2n

coordinate-wise projection of C onto k .

C is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

dist(C ) ≤ dist(C )

The theorem says that stabilizer codes over local Frobenius
rings cannot over-perform stabilizer codes over fields.

When C = C⊥ we have equality.

When C ( C⊥, we don’t know. However, computational and
theoretical data suggest that equality still holds.
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Minimum distance of a Stabilizer Code

Conjecture

Let C be a free stabilizer code. Then dist(C ) = dist(C ).



Thank You!


