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Frobenius Rings

m R will denote a finite commutative ring with identity.
= Ri= Hom((R,+), C*) will denote the character group.

m R= R as groups.
m R is a R-module structure via

(r-x)(x) = x(rx), forall r,x € Rand x € R.

m R is called Frobenius if R§ ~pR as R-modules.

m There exists y € R such that R = {r-x | r € R}.
m Such y is called generating character.
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Basic Notions

m Fix |R| = q and a generating character x € R.
m Fix a ON-bais of C9: B = {v, | x € R}.
m For a € R, define two unitary transformations of C9:

X(a):ve — Vxia
Z(a): vy — x(ax)vx

m Forall n € N, (C9)®" = C9". We use the ON-basis
B = {vy ® - @ vy, | (x1,...,%) € R"}

For a=(ai1,...,an) € R" define

X(a) = X(a1) ® - ® X(an) .
Z(a) == Z(a1) ® --- @ Z(a,) } U(q")
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m The n qubit quantum error basis is
En={X(a) - Z(b)| a,be R"}
={X(a1)Z(a1) ® - - ® X(an)Z(an) | (a,b) € R*"}
m Let e = X(a)Z(b), ¢ = X(a')Z(b') € E,. Then
ee' = x(b-3)X(a+3a)Z(b+ b)
ee=x(b-a)X(a+a)Z(b+1b)

meed =ée < x(b-d—-b a)=1
m For any n € N, the map (- | -)s : R?" x R?" — R defined as

{(a,b) | (d',b))s :=b-a — b'-a

is a non-degenerate, symplectic, bilinear form.
m For AC R?" At :={x € R?"| (x| A)s = 0}.
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The Pauli Group

m Let char(R) = c. Fix a N*"-PRU w, where
{c if ¢ is odd

2c if cis even

The n-th qubit Pauli Group associated to the error basis &, is
defined as

P, = {w'X(a)Z(b) | (a,b) € R*",I € Z}.

m We have a group homomorphism

VP, — R?" W/ X(a)Z(b) — (a,b)
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Quantum Stabilizer Codes

m A subgroup S < P, is called a stabilizer group if it is abelian
and SNkerV = {/}.

m A quantum stabilizer code (of length n over R) is

Q(S):={veC? |ev=v, forallec S} = ﬂ eig(e, 1)
ecS

= NOTE: § C C(P,).

Q(S) can detect all the errors outside C(Pp) — S.
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Quantum Stabilizer Codes

m The symplectic weight of an error e = w/X(a)Z(b) is

Wts( ) |{/ | (317 I) 7£ (07 0)}|

m The minimum distance of a quantum stabilizer code is

dist(Q(S)) := min{wts(e) | e € C(P,) — S}.
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Stabilizer Codes

A submodule C < R?" is called a stabilizer code if there exists a
stabilizer group S such that C = W(S).

Theorem (Gluesing-Luerssen/P, 2017)
A submodule C < R?" js a stabilizer code iff C C CL.

Definition

The symplectic weight of a codeword is

wts(a, b) := [{i | (ai, bi) # (0,0)}|.

The minimum distance of a stabilizer code is

min{wts(a, b) | (a,b) € C* —C} fCC Ct
min{wts(a, b) | (a,b) € C+ — {0}} if C=C+’

dist(C) :=
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Let A < R?" be a submodule. A linear map f : A — R?" is called a
symplectic isometry if for all x,y € R?"

wis(x) = wis(f(x)) and (x | y)s = (F(x) [ f(y))s.

For a permutation o € S,,, (a, b) — (o(a), o(b)).
(aa b) — ( 7ai—17bi7af+17"' P 7bi—1a_ai7bf+17"')-
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What is the structure of symplectic isometries of R2"?

m To answer this question we transfer the problem on (R?)" via
the change of coordinates

7R = (R?)" (a,b) + (a1, b1 | - | an, bn).

m The symplectic weight now becomes the Hamming weight on
R2?, that is, wty(x) = wts(y~1(x)) for all x € (R?)".

m Define (x| y) := (v }(x) | v"1(y))s for all x,y € (R?)".

m For a linear map f : R?" — R?", denote f = yoforyt
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Symplectic Isometries of R?"

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : R?" — R?" js a symplectic isometry iff the map
f:(R?)" — (R?)" is given by

f = diag(A1, -, An)(P ® b),
for A; € SLQ(R)

m We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries f : A C R?" — R?"?

m Although this question is interesting for submodule A < R2n,
we are interested on stabilizer codes.
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Symplectic Isometries of Stabilizer Codes

Let C < R?" be a stabilizer code. We define two groups:

Mons (C) := {f € Aut(C) | f is monomial}
Symp(C) := {f € Aut(C) | f is symplectic isometry}

m Mong (C) C Symp(C).
m Fact: Mong (C) C Symp(C).
m Reason: Explicit construction of a stabilizer code that does
not admit a monomial symplectic isometry.

Open Problem

How different can the groups Mong (C) and Symp(C) be?




Theorem (P, 2018)

For any groups H < K that satisfy some necessary conditions
there exists a stabilizer code such that H = Mong, (C) and
G = Symp(C).
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Minimum distance of a Stabilizer Code

m Let R be a local Frobenius ring with maximal ideal m, and
k := R/m the residue field.

m Let C < R?" be a free stabilizer code. Denote C < k2"
coordinate-wise projection of C onto k.
m C is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)
dist(C) < dist(C)

m The theorem says that stabilizer codes over local Frobenius
rings cannot over-perform stabilizer codes over fields.

m When C = C* we have equality.

m When C C C+, we don't know. However, computational and
theoretical data suggest that equality still holds.



Minimum distance of a Stabilizer Code

Let C be a free stabilizer code. Then dist(C) = dist(C).




Thank You!




