On Quantum Stabilizer Codes over Local Frobenius Rings

Tefjol Pllaha

Department of Mathematics University of Kentucky http://www.ms.uky.edu/~tpl222

AMS Sectional Meetings - Columbus, OH The Ohio State University March 18, 2018

▲ □ ▶ ▲ □ ▶ ▲

2 Quantum Stabilizer Codes

Ξ.

2 Quantum Stabilizer Codes

Ξ.

3 Stabilizer Codes

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes

Outline

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

Outline

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- **4** Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

R will denote a finite commutative ring with identity.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the character group.

2

- R will denote a finite commutative ring with identity.
- *R* := Hom((*R*, +), ℂ*) will denote the character group.
 R ≅ *R* as groups.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
 - $\widehat{R} \cong R$ as groups.
 - \widehat{R} is a *R*-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
 - $\widehat{R} \cong R$ as groups.
 - \widehat{R} is a *R*-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

• *R* is called **Frobenius** if $_R\widehat{R} \cong_R R$ as *R*-modules.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
 - $\widehat{R} \cong R$ as groups.
 - R is a R-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- *R* is called **Frobenius** if $_R\widehat{R} \cong_R R$ as *R*-modules.
 - There exists $\chi \in \widehat{R}$ such that $\widehat{R} = \{r \cdot \chi \mid r \in R\}$.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
 - $\widehat{R} \cong R$ as groups.
 - R is a R-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- *R* is called **Frobenius** if $_R\widehat{R} \cong_R R$ as *R*-modules.
 - There exists $\chi \in \widehat{R}$ such that $\widehat{R} = \{r \cdot \chi \mid r \in R\}.$
 - Such χ is called **generating character**.

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

• Fix
$$|R| = q$$
 and a generating character $\chi \in \widehat{R}$.

Fix |R| = q and a generating character χ ∈ R.
Fix a ON-bais of C^q: B = {v_x | x ∈ R}.

Ξ.

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{ v_x \mid x \in R \}.$

• For $a \in R$, define two unitary transformations of \mathbb{C}^q :

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$X(a):v_x \longrightarrow v_{x+a}$$

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{ v_x \mid x \in R \}.$
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$egin{array}{rcl} X(a):v_x&\longrightarrow&v_{x+a}\ Z(a):v_x&\longrightarrow&\chi(ax)v_x \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{ v_x \mid x \in R \}.$
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$egin{array}{rcl} X(a):v_x&\longrightarrow&v_{x+a}\ Z(a):v_x&\longrightarrow&\chi(ax)v_x \end{array}$$

• For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$.

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{ v_x \mid x \in R \}.$
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$egin{array}{rcl} X(a):v_x&\longrightarrow&v_{x+a}\ Z(a):v_x&\longrightarrow&\chi(ax)v_x \end{array}$$

• For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$. We use the ON-basis

 $\mathcal{B}^{\otimes n} := \{ v_{x_1} \otimes \cdots \otimes v_{x_n} \mid (x_1, \dots, x_n) \in \mathbb{R}^n \}$

- Fix |R| = q and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{ v_x \mid x \in R \}.$
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$egin{array}{rcl} X(a):v_x&\longrightarrow&v_{x+a}\ Z(a):v_x&\longrightarrow&\chi(ax)v_x \end{array}$$

• For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$. We use the ON-basis

$$\mathcal{B}^{\otimes n} := \{ v_{x_1} \otimes \cdots \otimes v_{x_n} \mid (x_1, \ldots, x_n) \in \mathbb{R}^n \}$$

For
$$a = (a_1, \dots, a_n) \in R^n$$
 define
 $X(a) := X(a_1) \otimes \dots \otimes X(a_n)$
 $Z(a) := Z(a_1) \otimes \dots \otimes Z(a_n)$
 $\Big\} \in \mathcal{U}(q^n)$

• The *n* qubit quantum error basis is

$$egin{aligned} \mathcal{E}_n &= \{X(a) \cdot Z(b) \mid a, b \in R^n\} \ &= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a,b) \in R^{2n}\} \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

• The *n* qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
• Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

• The *n* qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \dots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
• Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
• $ee' = e'e$

• The *n* qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \dots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
• Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
• $ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1.$

• The *n* qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \dots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
= Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
= $ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1$.
= For any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_s : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ defined as
 $\langle (a, b) | (a', b') \rangle_s := b \cdot a' - b' \cdot a$

• The *n* qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
• Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
• $ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1.$
• For any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_s : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ defined as
 $\langle (a, b) | (a', b') \rangle_s := b \cdot a' - b' \cdot a$

is a non-degenerate, symplectic, bilinear form.

The n qubit quantum error basis is

$$\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in \mathbb{R}^n\}$$

= $\{X(a_1)Z(a_1) \otimes \dots \otimes X(a_n)Z(a_n) \mid (a, b) \in \mathbb{R}^{2n}\}$
= Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
 $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
 $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
= $ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1$.
= For any $n \in \mathbb{N}$, the map $\langle \cdot \mid \cdot \rangle_s : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ defined as
 $\langle (a, b) \mid (a', b') \rangle_s := b \cdot a' - b' \cdot a$

is a non-degenerate, symplectic, bilinear form. For $A \subseteq R^{2n}$, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_s = 0\}$.

• Let
$$char(R) = c$$
.

• Let char(R) = c. Fix a Nth-PRU
$$\omega$$
, where

$$N = \begin{cases} c & \text{if } c \text{ is odd} \\ 2c & \text{if } c \text{ is even} \end{cases}$$

• Let char(R) = c. Fix a Nth-PRU
$$\omega$$
, where

$$N = \begin{cases} c & \text{if } c \text{ is odd} \\ 2c & \text{if } c \text{ is even} \end{cases}$$

Definition

The *n*-th qubit **Pauli Group** associated to the error basis \mathcal{E}_n is defined as

$$\mathcal{P}_n := \{ \omega^I X(a) Z(b) \mid (a,b) \in \mathbb{R}^{2n}, I \in \mathbb{Z} \}.$$

• Let char(R) = c. Fix a Nth-PRU
$$\omega$$
, where

$$N = \begin{cases} c & \text{if } c \text{ is odd} \\ 2c & \text{if } c \text{ is even} \end{cases}$$

Definition

The *n*-th qubit **Pauli Group** associated to the error basis \mathcal{E}_n is defined as

$$\mathcal{P}_n := \{ \omega^I X(a) Z(b) \mid (a,b) \in \mathbb{R}^{2n}, I \in \mathbb{Z} \}.$$

We have a group homomorphism

$$\Psi: \mathcal{P}_n \longrightarrow R^{2n}, \, \omega^I X(a) Z(b) \mapsto (a, b)$$

Quantum Stabilizer Codes

Definition

A subgroup S ≤ P_n is called a stabilizer group if it is abelian and S ∩ ker Ψ = {I}.
Definition

• A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.

・ロト ・回ト ・ヨト ・ヨト

2

A quantum stabilizer code (of length *n* over *R*) is

$$\mathcal{Q}(S) := \{ v \in \mathbb{C}^{q^n} \mid ev = v, \text{ for all } e \in S \}$$

Definition

- A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over *R*) is

$$\mathcal{Q}(S) := \{ v \in \mathbb{C}^{q^n} \mid ev = v, \text{ for all } e \in S \} = igcap_{e \in S} \operatorname{eig}(e, 1)$$

Definition

- A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over *R*) is

$$\mathcal{Q}(S) := \{ v \in \mathbb{C}^{q^n} \mid ev = v, \text{ for all } e \in S \} = igcap_{e \in S} \operatorname{eig}(e, 1)$$

・ロト ・部ト ・ヨト ・ ヨト - 三

• NOTE: $S \subseteq C(\mathcal{P}_n)$.

Definition

- A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over *R*) is

$$\mathcal{Q}(S) := \{ v \in \mathbb{C}^{q^n} \mid ev = v, \text{ for all } e \in S \} = igcap_{e \in S} \operatorname{eig}(e, 1)$$

• NOTE: $S \subseteq C(\mathcal{P}_n)$.

Theorem

 $\mathcal{Q}(S)$ can detect all the errors outside $\mathcal{C}(\mathcal{P}_n) - S$.

Definition

• The symplectic weight of an error $e = \omega^{I} X(a) Z(b)$ is

$$wt_s(e) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.$$

Definition

• The symplectic weight of an error $e = \omega^{I} X(a) Z(b)$ is

$$wt_s(e) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.$$

• The minimum distance of a quantum stabilizer code is

$$dist(\mathcal{Q}(S)) := \min\{\mathsf{wt}_{\mathsf{s}}(e) \mid e \in \mathcal{C}(\mathcal{P}_n) - S\}.$$

1 Frobenius Rings

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- **4** Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** if there exists a stabilizer group S such that $C = \Psi(S)$.

- 4 聞 と 4 注 と 4 注 と

Ξ.

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** if there exists a stabilizer group S such that $C = \Psi(S)$.

(人間) システン イラン

3

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C \leq R^{2n}$ is a stabilizer code iff $C \subseteq C^{\perp}$.

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** if there exists a stabilizer group S such that $C = \Psi(S)$.

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C \leq R^{2n}$ is a stabilizer code iff $C \subseteq C^{\perp}$.

Definition

The symplectic weight of a codeword is $wt_s(a, b) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.$

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** if there exists a stabilizer group S such that $C = \Psi(S)$.

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C \leq R^{2n}$ is a stabilizer code iff $C \subseteq C^{\perp}$.

Definition

The **symplectic weight** of a codeword is $wt_s(a, b) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.$ **The minimum distance** of a stabilizer code is

$$\mathsf{dist}(\mathcal{C}) := \begin{cases} \min\{\mathsf{wt}_\mathsf{s}(a,b) \mid (a,b) \in \mathcal{C}^\perp - \mathcal{C}\} & \text{ if } \mathcal{C} \subsetneq \mathcal{C}^\perp \\ \min\{\mathsf{wt}_\mathsf{s}(a,b) \mid (a,b) \in \mathcal{C}^\perp - \{0\}\} & \text{ if } \mathcal{C} = \mathcal{C}^\perp \end{cases}.$$

Outline

1 Frobenius Rings

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- **4** Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

Symplectic Isometries

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

 $\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$.

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

- **1** For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$.
- **2** $(a, b) \mapsto (\cdots, a_{i-1}, b_i, a_{i+1}, \cdots, \cdots, b_{i-1}, -a_i, b_{i+1}, \cdots).$

Question

What is the structure of symplectic isometries of R^{2n} ?

Question

What is the structure of symplectic isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

Question

What is the structure of symplectic isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.

Question

What is the structure of symplectic isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

- The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.
- Define $\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$ for all $x, y \in (\mathbb{R}^2)^n$.

Question

What is the structure of symplectic isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

- The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.
- Define $\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$ for all $x, y \in (R^2)^n$.
- For a linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$, denote $\tilde{f} := \gamma \circ f \circ \gamma^{-1}$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

(日) (同) (三) (三)

3

$$\widetilde{f} = diag(A_1, \cdots, A_n)$$

for $A_i \in SL_2(R)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

(日) (同) (三) (三)

3

for $A_i \in SL_2(R)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries monomial isometries.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries **monomial** isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq R^{2n} \to R^{2n}$?

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries **monomial** isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq R^{2n} \to R^{2n}$?

■ Although this question is interesting for submodule A ≤ R²ⁿ, we are interested on stabilizer codes.

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

▲ロ → ▲ 圖 → ▲ 画 → ▲ 画 → の Q @

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

▲ロ → ▲ 圖 → ▲ 画 → ▲ 画 → の Q @

• $Mon_{SL}(C) \subseteq Symp(C)$.

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

■
$$Mon_{SL}(C) \subseteq Symp(C)$$
.
■ Fact: $Mon_{SL}(C) \subsetneq Symp(C)$

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

- $Mon_{SL}(C) \subseteq Symp(C)$.
 - **Fact:** $Mon_{SL}(C) \subsetneq Symp(C)$.
 - Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

- $Mon_{SL}(C) \subseteq Symp(C)$.
 - **Fact:** $Mon_{SL}(C) \subsetneq Symp(C)$.
 - Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
Symplectic Isometries of Stabilizer Codes

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

• $Mon_{SL}(C) \subseteq Symp(C)$.

- **Fact:** $Mon_{SL}(C) \subsetneq Symp(C)$.
- Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Open Problem

How different can the groups $Mon_{SL}(C)$ and Symp(C) be?

Theorem (P, 2018)

For any groups $H \le K$ that satisfy some necessary conditions there exists a stabilizer code such that $H = Mon_{SL}(C)$ and G = Symp(C).

E 990

Outline

1 Frobenius Rings

- 2 Quantum Stabilizer Codes
- 3 Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.

Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.

э

• Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.

- Let C ≤ R²ⁿ be a *free* stabilizer code. Denote C ≤ k²ⁿ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $\mathsf{dist}(C) \le \mathsf{dist}(\overline{C})$

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

• \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) \leq dist(\overline{C})$

 The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

• \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $\mathsf{dist}(C) \leq \mathsf{dist}(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

• \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $\mathsf{dist}(C) \leq \mathsf{dist}(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.
- When $C \subsetneq C^{\perp}$, we don't know.

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $\mathsf{dist}(C) \leq \mathsf{dist}(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.
- When C ⊆ C[⊥], we don't know. However, computational and theoretical data suggest that equality still holds.

Conjecture

Let *C* be a free stabilizer code. Then $dist(C) = dist(\overline{C})$.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣A@

Thank You!