On Quantum Stabilizer Codes over Local Frobenius Rings

Tefjol Pllaha

Department of Mathematics University of Kentucky [http://www.ms.uky.edu/](http://www.ms.uky.edu/~tpl222)∼tpl222

AMS Sectional Meetings - Columbus, OH The Ohio State University March 18, 2018

メロト メ何ト メミトメ

Ε

 Ω

*Joint with Heide Gluesing-Luerssen

2 Quantum Stabilizer Codes

 $E = \Omega Q$

メロト メ都 トメ ミトメ ミト

2 Quantum Stabilizer Codes

 2990

경제 Ε.

澄後 そ

K ロ ト K 伊 ト K

3 Stabilizer Codes

Outline

1 Frobenius Rings

- **2** Quantum Stabilizer Codes
- **3** Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes

4.0.3

Ε

 2990

Outline

1 Frobenius Rings

- **2** Quantum Stabilizer Codes
- **3** Stabilizer Codes
- 4 Symplectic Isometries of Stabilizer Codes
- 5 Minimum distance of a Stabilizer Code

Outline

[Frobenius Rings](#page-6-0)

- [Quantum Stabilizer Codes](#page-15-0)
- **[Stabilizer Codes](#page-24-0)**
- **[Symplectic Isometries of Stabilizer Codes](#page-48-0)**
- [Minimum distance of a Stabilizer Code](#page-74-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → ⊙ Q @

 R will denote a finite commutative ring with identity.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \textsf{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.

活

 R will denote a finite commutative ring with identity. $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**. **F** $\widehat{R} \cong R$ as groups.

Ε

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.

$$
\widehat{R} \cong R \text{ as groups.}
$$

 R is a R -module structure via

$$
(r \cdot \chi)(x) := \chi(rx)
$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

目

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
	- **■** $\widehat{R} \cong R$ as groups.
	- \overline{R} is a R-module structure via

$$
(r \cdot \chi)(x) := \chi(rx)
$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

■ R is called **Frobenius** if $_R\hat{R} \cong_R R$ as R-modules.

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.

$$
\widehat{R} \cong R \text{ as groups.}
$$

 R is a R -module structure via

$$
(r \cdot \chi)(x) := \chi(rx)
$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- **■** R is called **Frobenius** if $_R\hat{R} \cong_R R$ as R-modules.
	- **There exists** $\chi \in \widehat{R}$ such that $\widehat{R} = \{r \cdot \chi \mid r \in R\}.$

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}((R, +), \mathbb{C}^*)$ will denote the **character group**.
	- **■** $\widehat{R} \cong R$ as groups.
	- \overline{R} is a R-module structure via

$$
(r \cdot \chi)(x) := \chi(rx)
$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- **■** R is called **Frobenius** if $_R\hat{R} \cong_R R$ as R-modules.
	- **There exists** $\chi \in \widehat{R}$ such that $\widehat{R} = \{r \cdot \chi \mid r \in R\}.$
	- Such χ is called generating character.

- [Quantum Stabilizer Codes](#page-15-0)
- **[Stabilizer Codes](#page-24-0)**
- **[Symplectic Isometries of Stabilizer Codes](#page-48-0)**
- [Minimum distance of a Stabilizer Code](#page-74-0)

Example 11 Fix
$$
|R| = q
$$
 and a generating character $\chi \in \widehat{R}$.

ż

Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$. Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.

メロメ メ都 メメモメメ ヨメ

活

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.

For $a \in R$, define two unitary transformations of \mathbb{C}^q :

Ε

 \rightarrow \oplus \rightarrow \rightarrow

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$
X(a): v_x \longrightarrow v_{x+a}
$$

Ε

 \rightarrow \oplus \rightarrow \rightarrow

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$
X(a): v_x \longrightarrow v_{x+a}
$$

$$
Z(a): v_x \longrightarrow \chi(ax)v_x
$$

Ε

イロト イ押 トイヨ トイ

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$
\begin{array}{ccc}X(a): v_{x} & \longrightarrow & v_{x+a}\\ Z(a): v_{x} & \longrightarrow & \chi(ax)v_{x}\end{array}
$$

For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$.

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$
X(a): v_x \longrightarrow v_{x+a}
$$

$$
Z(a): v_x \longrightarrow \chi(ax)v_x
$$

For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$. We use the ON-basis

$$
\mathcal{B}^{\otimes n}:=\{v_{x_1}\otimes\cdots\otimes v_{x_n}\mid (x_1,\ldots,x_n)\in R^n\}
$$

- Fix $|R| = q$ and a generating character $\chi \in \widehat{R}$.
- Fix a ON-bais of \mathbb{C}^q : $\mathcal{B} = \{v_x \mid x \in R\}$.
- For $a \in R$, define two unitary transformations of \mathbb{C}^q :

$$
\begin{array}{ccc}X(a): v_{x} & \longrightarrow & v_{x+a}\\ Z(a): v_{x} & \longrightarrow & \chi(ax)v_{x}\end{array}
$$

For all $n \in \mathbb{N}$, $(\mathbb{C}^q)^{\otimes n} \cong \mathbb{C}^{q^n}$. We use the ON-basis

$$
\mathcal{B}^{\otimes n} := \{v_{x_1} \otimes \cdots \otimes v_{x_n} \mid (x_1, \ldots, x_n) \in \mathbb{R}^n\}
$$

For
$$
a = (a_1, ..., a_n) \in R^n
$$
 define
\n
$$
X(a) := X(a_1) \otimes \cdots \otimes X(a_n) \}
$$
\n
$$
Z(a) := Z(a_1) \otimes \cdots \otimes Z(a_n) \} \in \mathcal{U}(q^n)
$$

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

= $\{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}\$

ミー 2990

メロメ メ御メ メミメ メミメ

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

= $\{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}$
Let $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then

$$
ee' = \chi(b \cdot a')X(a + a')Z(b + b')
$$

$$
e'e = \chi(b' \cdot a)X(a + a')Z(b + b')
$$

メロト メ御 トメ きょ メ きょう

 $E = \Omega Q$

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

\n
$$
= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}
$$

\nLet $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
\n
$$
ee' = \chi(b \cdot a')X(a + a')Z(b + b')
$$

\n
$$
e'e = \chi(b' \cdot a)X(a + a')Z(b + b')
$$

\n
$$
ee' = e'e
$$

メロト メ御 トメ きょ メ きょう

 $E = \Omega Q$

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

\n
$$
= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}
$$

\nLet $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
\n
$$
ee' = \chi(b \cdot a')X(a + a')Z(b + b')
$$

\n $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
\n $\blacksquare ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1.$

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

\n
$$
= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}
$$

\nLet $e = X(a)Z(b)$, $e' = X(a')Z(b') \in \mathcal{E}_n$. Then
\n
$$
ee' = \chi(b \cdot a')X(a + a')Z(b + b')
$$

\n
$$
e'e = \chi(b' \cdot a)X(a + a')Z(b + b')
$$

\n
$$
ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1.
$$

\nFor any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_s : R^{2n} \times R^{2n} \rightarrow R$ defined as
\n
$$
\langle (a, b) | (a', b') \rangle_s := b \cdot a' - b' \cdot a
$$

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

\n
$$
= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}
$$

\nLet $e = X(a)Z(b)$, $e' = X(a')Z(b') \in \mathcal{E}_n$. Then
\n
$$
ee' = \chi(b \cdot a')X(a + a')Z(b + b')
$$

\n
$$
e'e = \chi(b' \cdot a)X(a + a')Z(b + b')
$$

\n
$$
ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1.
$$

\nFor any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_s : R^{2n} \times R^{2n} \rightarrow R$ defined as
\n
$$
\langle (a, b) | (a', b') \rangle_s := b \cdot a' - b' \cdot a
$$

is a non-degenerate, symplectic, bilinear form.

 \blacksquare The *n* qubit quantum error basis is

$$
\mathcal{E}_n = \{X(a) \cdot Z(b) \mid a, b \in R^n\}
$$

\n
$$
= \{X(a_1)Z(a_1) \otimes \cdots \otimes X(a_n)Z(a_n) \mid (a, b) \in R^{2n}\}
$$

\nLet $e = X(a)Z(b), e' = X(a')Z(b') \in \mathcal{E}_n$. Then
\n $ee' = \chi(b \cdot a')X(a + a')Z(b + b')$
\n $e'e = \chi(b' \cdot a)X(a + a')Z(b + b')$
\n $ee' = e'e \iff \chi(b \cdot a' - b' \cdot a) = 1$.
\nFor any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_s : R^{2n} \times R^{2n} \rightarrow R$ defined as
\n $\langle (a, b) | (a', b') \rangle_s := b \cdot a' - b' \cdot a$

is a non-degenerate, symplectic, bilinear form. For $A \subseteq R^{2n}$ $A \subseteq R^{2n}$, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$ 2090

Let
$$
char(R) = c
$$
.

Let char $(R)=c$. Fix a N^{th} -PRU ω , where $N =$ $\int c$ if c is odd 2c if c is even

メロメ メ都 メメモメメ ヨメ

活

Let
$$
char(R) = c
$$
. Fix a N^{th} -PRU ω , where

$$
N = \begin{cases} c & \text{if } c \text{ is odd} \\ 2c & \text{if } c \text{ is even} \end{cases}
$$

Definition

The *n*-th qubit **Pauli Group** associated to the error basis \mathcal{E}_n is defined as

$$
\mathcal{P}_n:=\{\omega^lX(a)Z(b)\mid (a,b)\in R^{2n}, l\in\mathbb{Z}\}.
$$

K ロ ▶ K @ ▶ K

造入 メ君入

Ε

Let
$$
char(R) = c
$$
. Fix a N^{th} -PRU ω , where

$$
N = \begin{cases} c & \text{if } c \text{ is odd} \\ 2c & \text{if } c \text{ is even} \end{cases}
$$

Definition

The *n*-th qubit **Pauli Group** associated to the error basis \mathcal{E}_n is defined as

$$
\mathcal{P}_n:=\{\omega^lX(a)Z(b)\mid (a,b)\in R^{2n}, l\in\mathbb{Z}\}.
$$

We have a group homomorphism

2n , ωlX(a)Z(b[\)](#page-33-0) 7[→](#page-35-0) [\(](#page-30-0)[a](#page-31-0)[,](#page-34-0) [b](#page-35-0)[\)](#page-0-0)Ψ : Pⁿ −→ R

Quantum Stabilizer Codes

Definition

A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}.$
Definition

A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.

∢ ロ ▶ (x @) → (を) → (を) →

目

 Ω

A quantum stabilizer code (of length *n* over R) is

$$
\mathcal{Q}(S):=\{v\in\mathbb{C}^{q^n}\mid ev=v,\text{ for all }e\in S\}
$$

Definition

- A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over R) is

$$
\mathcal{Q}(S):=\{v\in\mathbb{C}^{q^n}\mid ev=v, \text{ for all }e\in S\}=\bigcap_{e\in S} \text{eig}(e,1)
$$

∢ ロ ▶ (x @) → (を) → (を) →

G.

 Ω

Definition

- A subgroup $S \leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over R) is

$$
\mathcal{Q}(S):=\{v\in\mathbb{C}^{q^n}\mid ev=v, \text{ for all } e\in S\}=\bigcap_{e\in S}\text{eig}(e,1)
$$

メロメ メ都 メメ きょうくぼ メー

Ε. Ω

NOTE: $S \subseteq C(\mathcal{P}_n)$.

Definition

- A subgroup $S \n\leq \mathcal{P}_n$ is called a **stabilizer group** if it is abelian and $S \cap \ker \Psi = \{I\}$.
- A quantum stabilizer code (of length *n* over R) is

$$
\mathcal{Q}(S):=\{v\in\mathbb{C}^{q^n}\mid ev=v,\,\,\text{for all}\,\, e\in S\}=\bigcap_{e\in S}\text{eig}(e,1)
$$

nar

NOTE: $S \subseteq C(\mathcal{P}_n)$.

Theorem

 $\mathcal{Q}(S)$ $\mathcal{Q}(S)$ $\mathcal{Q}(S)$ can detect all the errors outside $\mathcal{C}(\mathcal{P}_n) - S$ [.](#page-34-0)

Definition

The symplectic weight of an error $e = \omega' X(a) Z(b)$ is

$$
\mathsf{wt}_{\mathsf{s}}(e) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.
$$

メロメ メ都 メメモメメ ヨメ

活

 298

Definition

The symplectic weight of an error $e = \omega' X(a) Z(b)$ is

$$
\mathsf{wt}_{\mathsf{s}}(e) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.
$$

The minimum distance of a quantum stabilizer code is

$$
dist(Q(S)) := min\{wt_s(e) \mid e \in C(\mathcal{P}_n) - S\}.
$$

[Frobenius Rings](#page-6-0)

- [Quantum Stabilizer Codes](#page-15-0)
- [Stabilizer Codes](#page-24-0)
- **[Symplectic Isometries of Stabilizer Codes](#page-48-0)**
- [Minimum distance of a Stabilizer Code](#page-74-0)

K ロ → K 御 → K 君 → K 君 → 三君 → の Q Q →

Definition

A submodule $C\leq R^{2n}$ is called a $\boldsymbol{\mathsf{stabilizer}}$ $\boldsymbol{\mathsf{code}}$ if there exists a stabilizer group S such that $C = \Psi(S)$.

す ライモ メイ

活

 298

4.0.3

Definition

A submodule $C\leq R^{2n}$ is called a $\boldsymbol{\mathsf{stabilizer}}$ $\boldsymbol{\mathsf{code}}$ if there exists a stabilizer group S such that $C = \Psi(S)$.

 $\left\{\frac{m}{2}$ $\right\}$ $\left\{\frac{m}{2}$ $\right\}$ $\left\{\frac{m}{2}$ $\right\}$

目

 Ω

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C\leq R^{2n}$ is a stabilizer code iff $C\subseteq C^\perp$.

Definition

A submodule $C\leq R^{2n}$ is called a $\boldsymbol{\mathsf{stabilizer}}$ $\boldsymbol{\mathsf{code}}$ if there exists a stabilizer group S such that $C = \Psi(S)$.

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C\leq R^{2n}$ is a stabilizer code iff $C\subseteq C^\perp$.

Definition

The **symplectic weight** of a codeword is $\mathsf{wt_s}(a,b) := |\{i \mid (a_i,b_i) \neq (0,0)\}|.$

Definition

A submodule $C\leq R^{2n}$ is called a $\boldsymbol{\mathsf{stabilizer}}$ $\boldsymbol{\mathsf{code}}$ if there exists a stabilizer group S such that $C = \Psi(S)$.

Theorem (Gluesing-Luerssen/P, 2017)

A submodule $C\leq R^{2n}$ is a stabilizer code iff $C\subseteq C^\perp$.

Definition

The **symplectic weight** of a codeword is $\mathsf{wt_s}(a,b) := |\{i \mid (a_i,b_i) \neq (0,0)\}|.$ The minimum distance of a stabilizer code is

$$
\mathsf{dist}(\mathsf{C}) := \begin{cases} \min\{\mathsf{wt_s}(a,b) \mid (a,b) \in \mathsf{C}^\perp - \mathsf{C}\} & \text{ if } \mathsf{C} \subsetneq \mathsf{C}^\perp \\ \min\{\mathsf{wt_s}(a,b) \mid (a,b) \in \mathsf{C}^\perp - \{0\}\} & \text{ if } \mathsf{C} = \mathsf{C}^\perp \end{cases}
$$

Outline

[Frobenius Rings](#page-6-0)

- [Quantum Stabilizer Codes](#page-15-0)
- **[Stabilizer Codes](#page-24-0)**
- [Symplectic Isometries of Stabilizer Codes](#page-48-0)
- [Minimum distance of a Stabilizer Code](#page-74-0)

Symplectic Isometries

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Let $A\leq R^{2n}$ be a submodule. A linear map $f:A\to R^{2n}$ is called a symplectic isometry if for all $x, y \in R^{2n}$

 $\mathsf{wt_s}(x) = \mathsf{wt_s}(f(x))$ and $\langle x \mid y \rangle_\mathsf{s} = \langle f (x) \mid f (y) \rangle_\mathsf{s}.$

KED KARD KED KED E VOOR

Let $A\leq R^{2n}$ be a submodule. A linear map $f:A\to R^{2n}$ is called a symplectic isometry if for all $x, y \in R^{2n}$

$$
wt_s(x) = wt_s(f(x)) \text{ and } \langle x | y \rangle_s = \langle f(x) | f(y) \rangle_s.
$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$.

Let $A\leq R^{2n}$ be a submodule. A linear map $f:A\to R^{2n}$ is called a symplectic isometry if for all $x, y \in R^{2n}$

$$
wt_s(x) = wt_s(f(x)) \text{ and } \langle x | y \rangle_s = \langle f(x) | f(y) \rangle_s.
$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$. 2 (a, b) \mapsto $(\cdots, a_{i-1}, b_i, a_{i+1}, \cdots, \cdots, b_{i-1}, -a_i, b_{i+1}, \cdots).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 안

Question

What is the structure of symplectic isometries of \mathcal{R}^{2n} ?

K ロ ▶ K @ ▶ K

造入 メ君入

Ε. 2990

Question

What is the structure of symplectic isometries of \mathcal{R}^{2n} ?

To answer this question we transfer the problem on $(R^2)^n$ via the change of coordinates

$$
\gamma: R^{2n} \to (R^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).
$$

Ε

 Ω

Question

What is the structure of symplectic isometries of \mathcal{R}^{2n} ?

To answer this question we transfer the problem on $(R^2)^n$ via the change of coordinates

$$
\gamma: R^{2n} \to (R^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).
$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, $\mathsf{wt}_\mathsf{H}(x) = \mathsf{wt}_\mathsf{s}(\gamma^{-1}(x))$ for all $x \in (R^2)^n$.

Question

What is the structure of symplectic isometries of \mathcal{R}^{2n} ?

To answer this question we transfer the problem on $(R^2)^n$ via the change of coordinates

$$
\gamma: R^{2n} \to (R^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).
$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, $\mathsf{wt}_\mathsf{H}(x) = \mathsf{wt}_\mathsf{s}(\gamma^{-1}(x))$ for all $x \in (R^2)^n$.

Define $\langle x | y \rangle := \langle \gamma^{-1}(x) | \gamma^{-1}(y) \rangle$ s for all $x, y \in (R^2)^n$.

Question

What is the structure of symplectic isometries of \mathcal{R}^{2n} ?

To answer this question we transfer the problem on $(R^2)^n$ via the change of coordinates

$$
\gamma: R^{2n} \to (R^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).
$$

- **The symplectic weight now becomes the Hamming weight on** R^2 , that is, $\mathsf{wt}_\mathsf{H}(x) = \mathsf{wt}_\mathsf{s}(\gamma^{-1}(x))$ for all $x \in (R^2)^n$.
- Define $\langle x | y \rangle := \langle \gamma^{-1}(x) | \gamma^{-1}(y) \rangle$ s for all $x, y \in (R^2)^n$.
- For a linear map $f: R^{2n} \to R^{2n}$, denote $\widetilde{f} := \gamma \circ f \circ \gamma^{-1}$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

メロメ メ母メ メミメ メミメ

目

 Ω

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

メロメ メ都 メメモメメ ヨメ

目

 Ω

$$
\widetilde{f} = diag(A_1, \cdots, A_n)
$$

for $A_i \in SL_2(R)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

$$
\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),
$$

メロメ メ都 メメモメメ ヨメ

目

 Ω

for $A_i \in SL_2(R)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

$$
\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),
$$

for $A_i \in SL_2(R)$.

We call such symplectic isometries monomial isometries.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

$$
\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),
$$

for $A_i \in SL_2(R)$.

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f: A\subsetneq R^{2n}\to R^{2n}$?

Theorem (Gluesing-Luerssen/P, 2017)

A linear map f : $R^{2n}\to R^{2n}$ is a symplectic isometry iff the map $\widetilde{f}:(R^2)^n\to (R^2)^n$ is given by

$$
\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),
$$

for $A_i \in SL_2(R)$.

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f: A\subsetneq R^{2n}\to R^{2n}$?

Although this question is interesting for submodule $A \leq R^{2n}$, we are interested on stabilizer codes. The state of the state of the 2990 Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

경기 지경기

目

 Ω

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_L(C) := {f \in Aut(C) | f is monomial}$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ 「君」 約9.09

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_L(C) := {f \in Aut(C) | f is monomial}$ $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

イロト イ押 トイヨ トイヨ トーヨー

 Ω

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_L(C) := {f \in Aut(C) | f is monomial}$ $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

KED KARD KED KED E VOOR

■ Mon_{SL} (C) \subseteq Symp (C) .

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_L(C) := {f \in Aut(C) | f is monomial}$ $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ 「君」 約9.09

\n- $$
Mon_{SL}(C) \subseteq Symp(C)
$$
.
\n- **Fact:** Mon_{SL}(C) \subsetneq Symp(C).
\n

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_l(C) := {f \in Aut(C) | f is monomial}$ $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

- Mon_{SL} $(C) \subseteq$ Symp (C) .
	- **Fact:** Mon_{SL}(C) \subseteq Symp(C).
	- **Reason:** Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mons_l(C) := {f \in Aut(C) | f is monomial}$ $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

- Mon_{SL} $(C) \subseteq$ Symp (C) .
	- **Fact:** Mon_{SL}(C) \subseteq Symp(C).
	- **Reason:** Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
Symplectic Isometries of Stabilizer Codes

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

Mon_{SL}(C) := $\{f \in Aut(C) \mid f$ is monomial} $Symp(C) := \{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

■ Mon_{SL} $(C) \subseteq$ Symp (C) .

- **Fact:** $\text{Mon}_{SL}(C) \subseteq \text{Symp}(C)$.
- **Reason:** Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Open Problem

How different can the groups $Mon_{SI}(C)$ and $Symp(C)$ be?

Theorem (P, 2018)

For any groups $H \leq K$ that satisfy some necessary conditions there exists a stabilizer code such that $H = \text{Mons}_1(C)$ and $G = \text{Symp}(C)$.

メロメ メ御 メメ きょくきょう

ミー つくび

Outline

1 [Frobenius Rings](#page-6-0)

- 2 [Quantum Stabilizer Codes](#page-15-0)
- **3 [Stabilizer Codes](#page-24-0)**
- **4 [Symplectic Isometries of Stabilizer Codes](#page-48-0)**
- 5 [Minimum distance of a Stabilizer Code](#page-74-0)

メロメ メ御 メメ きょく ミメー $E = \Omega Q$

Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.

Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.

 Ω

Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.

 Ω

- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
	- \overline{C} is a stabilizer code over k.

Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.

 209

Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k .

 \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) < dist(\overline{C})$

- Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k .

 \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) < dist(\overline{C})$

■ The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.

- Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k .

 \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) < dist(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $\mathcal{C} = \mathcal{C}^\perp$ we have equality.

- Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k .

 \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) < dist(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $\mathcal{C} = \mathcal{C}^\perp$ we have equality.
- When $\mathcal{C} \subsetneq \mathcal{C}^{\perp}$, we don't know.

- Let R be a local Frobenius ring with maximal ideal m , and $k := R/m$ the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k .

 \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen/P, 2017)

 $dist(C) < dist(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $\mathcal{C} = \mathcal{C}^\perp$ we have equality.
- When $\mathcal{C} \subsetneq \mathcal{C}^\perp$, we don't know. However, computational and theoretical data suggest that equality s[till](#page-82-0) [ho](#page-84-0)[l](#page-74-0)[d](#page-75-0)[s.](#page-83-0)

 209

Conjecture

Let C be a free stabilizer code. Then dist(C) = dist(\overline{C}).

メロメ メ都 メメモメメ ヨメ 活 Ω

Thank You!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 │ ◆ 9,9,0*