Extension Theorems for Sublinear Codes

Tefjol Pllaha

Department of Mathematics University of Kentucky

Special Session on Coding Theory and Its Applications Loyola University Chicago October 4, 2015

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

- * ロ * * 団 * * 団 * * 団 * - 日 * うえの

Department of Mathematics University of Kentucky

 An isomorphism between linear codes is a linear weight preserving maps.

Department of Mathematics University of Kentucky

- An isomorphism between linear codes is a linear weight preserving maps.
- A map $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is called monomial map if exist $u_i \in \mathbb{F}_q^*$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(u_1a_{\pi(1)},\ldots,u_na_{\pi(n)})$$

for all $(a_1, \ldots, a_n) \in \mathbb{F}_q^n$.

Department of Mathematics University of Kentucky

A (1) > A (2) > A

- An isomorphism between linear codes is a linear weight preserving maps.
- A map $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is called monomial map if exist $u_i \in \mathbb{F}_q^*$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(u_1a_{\pi(1)},\ldots,u_na_{\pi(n)})$$

for all $(a_1, \ldots, a_n) \in \mathbb{F}_q^n$.

• Linear weight preserving maps of \mathbb{F}_q^n are monomial maps.

Department of Mathematics University of Kentucky

A (1) > A (1) > A

- An isomorphism between linear codes is a linear weight preserving maps.
- A map $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is called monomial map if exist $u_i \in \mathbb{F}_q^*$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(u_1a_{\pi(1)},\ldots,u_na_{\pi(n)})$$

for all $(a_1, \ldots, a_n) \in \mathbb{F}_q^n$.

- Linear weight preserving maps of \mathbb{F}_q^n are monomial maps.
- Theorem (MacWilliams, 1961): If C ⊆ Fⁿ_q is a linear code and f : C → Fⁿ_q is a linear weight preserving map, then f is a monomial map.

▲ @ ▶ ▲ @ ▶ ▲

- * ロ * * 団 * * 国 * * 国 * * 日 * * の < の

Department of Mathematics University of Kentucky

Different alphabets.

Department of Mathematics University of Kentucky

- Different alphabets.
- Different weights.

- * ロ ト * @ ト * 差 ト * 差 ト - 差 - のへで

Department of Mathematics University of Kentucky

- Different alphabets.
- Different weights.
- Nonlinear codes.

Department of Mathematics University of Kentucky

- ▲ロと ▲聞を ▲目を ▲目を 三回 うろの

Department of Mathematics University of Kentucky

 Ward and Wood (1996) give a character theoretic proof for MacWilliams Extension Theorem.

Department of Mathematics University of Kentucky

- Ward and Wood (1996) give a character theoretic proof for MacWilliams Extension Theorem.
- Theorem (Wood, 1999): Let R be a finite Frobenius ring. If $C \subseteq R^n$ is a right linear code and $f : C \to R^n$ is a linear weight preserving map, then there exist $u_i \in R^*$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(u_1a_{\pi(1)},\ldots,u_na_{\pi(n)})$$

for all $(a_1,\ldots,a_n) \in \mathcal{C}$.

Department of Mathematics University of Kentucky

- Ward and Wood (1996) give a character theoretic proof for MacWilliams Extension Theorem.
- Theorem (Wood, 1999): Let R be a finite Frobenius ring. If $C \subseteq R^n$ is a right linear code and $f : C \to R^n$ is a linear weight preserving map, then there exist $u_i \in R^*$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(u_1a_{\pi(1)},\ldots,u_na_{\pi(n)})$$

for all $(a_1, \ldots, a_n) \in \mathcal{C}$.

• Theorem (Greferath, Nechaev, Wisbauer, 2003): Let R be a finite ring with identity and $_RM_R$ be a finite Frobenius bimodule. If $C \subseteq M_R^n$ is a right linear code and $f : C \to M_R^n$ is a right linear weight preserving map, then there exist $f_i \in Aut(M_R)$ and $\pi \in S_n$ such that

$$f(a_1,\ldots,a_n)=(f_1(a_{\pi(1)}),\ldots,f_n(a_{\#(n)}))$$

Generalizations: The Rosenbloom-Tsfasman Weight

- *ロト *聞 ト *注 ト *注 ト ・注 ・ のへぐ

Department of Mathematics University of Kentucky

Generalizations: The Rosenbloom-Tsfasman Weight

 Definition: For a given vector x = (x₁,...,x_n) ∈ Rⁿ, its RT-weight is defined as

$$\mathsf{wt}_{\mathsf{RT}}(x) = egin{cases} 0, & x = 0, \ \mathsf{max}\{i|x_i
eq 0\}, & \mathsf{otherwise} \end{cases}.$$

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

Generalizations: The Rosenbloom-Tsfasman Weight

Definition: For a given vector $x = (x_1, ..., x_n) \in \mathbb{R}^n$, its RT-weight is defined as

$$\operatorname{wt}_{\mathsf{RT}}(x) = \begin{cases} 0, & x = 0, \\ \max\{i | x_i \neq 0\}, & \text{otherwise} \end{cases}$$

Theorem (Barra, Gluesing-Luerssen, 2014): Let R be a finite Frobenius ring and C ⊂ Rⁿ be a left code. Then, any left linear wt_{RT}-preserving map f : C → Rⁿ satisfies the MacWilliams extension theorem.

Department of Mathematics University of Kentucky

/⊒ > < ∃ >

- * ロ * * @ * * 注 * * 注 * の < ?

Department of Mathematics University of Kentucky

• Definition: Let L be a finite field and K be a subfield. A K-linear code $C \subseteq L^n$ is a K-linear subspace of L^n .

Department of Mathematics University of Kentucky

- Definition: Let L be a finite field and K be a subfield. A K-linear code $C \subseteq L^n$ is a K-linear subspace of L^n .
- Theorem (Dyshko, 2014): Let L be a finite field, K be a proper subfield and C ⊆ Lⁿ be a K linear code. Then, every K-linear weight-preserving map f : C → Lⁿ extends to an isometry of Lⁿ if and only if n ≤ |K|.

Department of Mathematics University of Kentucky

- Definition: Let L be a finite field and K be a subfield. A K-linear code $C \subseteq L^n$ is a K-linear subspace of L^n .
- Theorem (Dyshko, 2014): Let L be a finite field, K be a proper subfield and $C \subseteq L^n$ be a K linear code. Then, every K-linear weight-preserving map $f : C \to L^n$ extends to an isometry of L^n if and only if $n \leq |K|$.
- **Question:** Is the same theorem true for (nice) ring extensions R/S?

Department of Mathematics University of Kentucky

- Definition: Let L be a finite field and K be a subfield. A K-linear code $C \subseteq L^n$ is a K-linear subspace of L^n .
- Theorem (Dyshko, 2014): Let L be a finite field, K be a proper subfield and $C \subseteq L^n$ be a K linear code. Then, every K-linear weight-preserving map $f : C \to L^n$ extends to an isometry of L^n if and only if $n \leq |K|$.
- Question: Is the same theorem true for (nice) ring extensions R/S?
- **Answer:** No! For *R* = ℤ₄ × ℤ₄ and *S* it's diagonal subring, the theorem fails.

◆ 同 → ◆ 三 →

Department of Mathematics University of Kentucky

Proposition : Let f : Lⁿ → Lⁿ be a K-linear map. Then f is wt_{RT}-isometry if and only if there exists a matrix

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

with $A_{ij} \in M_m(K)$, [L : K] = m > 1 and $A_{ii} \in Gl_m(K)$, such that f(x) = xA for all $x \in L^n$.

Department of Mathematics University of Kentucky

• Proposition : Let $f : L^n \to L^n$ be a K-linear map. Then f is wt_{RT}-isometry if and only if there exists a matrix

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

with $A_{ij} \in M_m(K)$, [L:K] = m > 1 and $A_{ii} \in Gl_m(K)$, such that f(x) = xA for all $x \in L^n$.

Proposition: For any two words $u, v \in L^n$ of the same RT-weight, there exists a matrix A as above such that u = vA.

• Proposition : Let $f : L^n \to L^n$ be a K-linear map. Then f is wt_{RT}-isometry if and only if there exists a matrix

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ A_{21} & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

with $A_{ij} \in M_m(K)$, [L : K] = m > 1 and $A_{ii} \in Gl_m(K)$, such that f(x) = xA for all $x \in L^n$.

- Proposition: For any two words u, v ∈ Lⁿ of the same RT-weight, there exists a matrix A as above such that u = vA.
- Corollary: Let $C \subset L^n$ be a K-linear code and $f : C \to L^n$ be an RT-isometry. Then for every $u \in C$ there exists a matrix A_u as above such that $f(u) = uA_u$.

Conclusion

- ▲ロ > ▲ 圖 > ▲ 圖 > ▲ 圖 > の Q @

Department of Mathematics University of Kentucky

Conclusion

 The group of invertible lower triangular matrices has the local-global property.

Department of Mathematics University of Kentucky

Conclusion

- The group of invertible lower triangular matrices has the local-global property.
- Theorem: Let L be a finite field, K be a proper subfield and $C \subset L^n$ be a K-linear code. Then any K-linear RT-isometry $f : C \to L^n$ extends to an RT-isometry of the entire space.

Open Problem

- * ロ * * @ * * 注 * * 注 * の < ?

Department of Mathematics University of Kentucky

• A finite Frobenius bimodule has the extension property with respect to the Rosenbloom-Tsfasman weight.

A (1) > A (2) > A

Thank You!

・ロ・・聞・・叫・・ いくの

Department of Mathematics University of Kentucky