Additive Codes Associated to Laplacian Simplices

Tefjol Pllaha

Department of Mathematics University of Kentucky http://www.ms.uky.edu/~tpl222

CIMPA Research School and Workshop: Quasi-Cyclic and Related Algebraic Codes
Middle East Technical University, Ankara, Turkey

^{*}Joint with Marie Meyer

1 (Ehrhart) Theory of simplices

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- Codes and duality

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- Codes and duality
- 4 Analysis

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- Codes and duality
- 4 Analysis
- 5 Further research

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- 3 Reflexive Laplacian simplices, codes, and duality
- 4 Analysis
- 5 Future research

■ A simplex Δ in \mathbb{R}^d is a full-dimensional convex hull of d+1 points $\mathbf{v}_1, \ldots, \mathbf{v}_{d+1}$ (in \mathbb{R}^d).

■ A simplex Δ in \mathbb{R}^d is a full-dimensional convex hull of d+1 points $\mathbf{v}_1, \ldots, \mathbf{v}_{d+1}$ (in \mathbb{R}^d). Throughout we will focus on lattice simplices.

- A simplex Δ in \mathbb{R}^d is a full-dimensional convex hull of d+1 points $\mathbf{v}_1, \ldots, \mathbf{v}_{d+1}$ (in \mathbb{R}^d). Throughout we will focus on lattice simplices.
- If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

$$\Delta^{\!\!ee} := \{ \mathbf{x} \in \mathbb{R}^d \mid \mathbf{x} \, \mathbf{y}^{\!\!\mathsf{T}} \leq 1 \; \mathsf{for all} \; \mathbf{y} \in \Delta \} \,.$$

- A simplex Δ in \mathbb{R}^d is a full-dimensional convex hull of d+1 points $\mathbf{v}_1, \ldots, \mathbf{v}_{d+1}$ (in \mathbb{R}^d). Throughout we will focus on lattice simplices.
- If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

$$\Delta^{\vee} := \{ \mathbf{x} \in \mathbb{R}^d \mid \mathbf{x} \, \mathbf{y}^{\mathsf{T}} \leq 1 \text{ for all } \mathbf{y} \in \Delta \}.$$

■ The **fundamental parallelepiped** of Δ is

$$\Pi(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \,\middle|\, 0 \leq \lambda_i < 1
ight\} \subseteq \mathbb{R}^{d+1}.$$

- A simplex Δ in \mathbb{R}^d is a full-dimensional convex hull of d+1 points $\mathbf{v}_1, \ldots, \mathbf{v}_{d+1}$ (in \mathbb{R}^d). Throughout we will focus on lattice simplices.
- If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

$$\Delta^{\vee} := \{ \mathbf{x} \in \mathbb{R}^d \mid \mathbf{x} \, \mathbf{y}^{\mathsf{T}} \leq 1 \text{ for all } \mathbf{y} \in \Delta \}.$$

■ The **fundamental parallelepiped** of Δ is

$$\Pi(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \,\middle|\, 0 \leq \lambda_i < 1
ight\} \subseteq \mathbb{R}^{d+1}.$$

(Batyrev and Hofscheier):

$$\Lambda(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \; \middle| \; \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}
ight\}$$

$$lacksquare$$
 $\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$

 $lack \Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$ with addition

$$(\lambda_1, \dots, \lambda_{d+1}) + (\lambda'_1, \dots, \lambda'_{d+1}) = (\{\lambda_1 + \lambda'_1\}, \dots, \{\lambda_{d+1} + \lambda'_{d+1}\}),$$

where {•} denotes the fractional part of a number.

lacksquare $\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$ with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda_1',\ldots,\lambda_{d+1}')=(\{\lambda_1+\lambda_1'\},\ldots,\{\lambda_{d+1}+\lambda_{d+1}'\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

■ The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\}$$

lacksquare $\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$ with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda_1',\ldots,\lambda_{d+1}')=(\{\lambda_1+\lambda_1'\},\ldots,\{\lambda_{d+1}+\lambda_{d+1}'\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

■ The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\}$$

= $\#\left\{\lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i\right\}.$

 $lack \Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$ with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda_1',\ldots,\lambda_{d+1}')=(\{\lambda_1+\lambda_1'\},\ldots,\{\lambda_{d+1}+\lambda_{d+1}'\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

■ The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\}$$
$$= \#\left\{\lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i\right\}.$$

• If $h^*(\Delta)$ is symmetric then Δ is called **reflexive**.

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- 3 Reflexive Laplacian simplices, codes, and duality
- 4 Analysis
- 5 Future research

Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) \mid 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) \mid 1]$ the matrix $L_G(n)$ with a coulumn of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of $L_G(n)$, denoted Δ_G , is called the **Laplacian simplex associated to** G.

■ Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$.

Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$. Then $\ker A$, $\operatorname{im} A$ are additive codes over \mathbb{Z}_m .

Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$. Then $\ker A$, $\operatorname{im} A$ are additive codes over \mathbb{Z}_m . We have $\mathbb{Z}_m^n = \ker A \oplus \operatorname{im} A$ and $(\ker A)^{\perp} = \operatorname{im} (A^{\mathsf{T}})$.

Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$. Then $\ker A$, $\operatorname{im} A$ are additive codes over \mathbb{Z}_m . We have $\mathbb{Z}_m^n = \ker A \oplus \operatorname{im} A$ and $(\ker A)^{\perp} = \operatorname{im} (A^{\mathsf{T}})$.

Theorem (Braun/Meyer, 2017)

Let G be a simple connected graph on n vertices. Then

$$\Lambda(\Delta_G) = \left\{ \frac{\mathbf{x}}{n\tau(G)} \,\middle|\, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_{n\tau(G)}}[L(n) \mid 1] \right\}.$$

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- 3 Reflexive Laplacian simplices, codes, and duality
- 4 Analysis
- 5 Future research

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then

$$\Lambda(\Delta_G) = \left\{ \frac{\mathbf{x}}{n} \, \middle| \, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_n}[L(n) \mid 1] \right\}.$$

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then

$$\Lambda(\Delta_G) = \left\{ \frac{\mathbf{x}}{n} \, \middle| \, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_n}[L(n) \mid 1] \right\}.$$

Definition

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then $\mathcal{C}(\Delta_G) := \ker_{\mathbb{Z}_n}[L(n) \mid 1] \subseteq \mathbb{Z}_n^n$ is called the additive code associated to the (reflexive) Laplacian simplex Δ_G .

Reflexive Laplacian simplices, codes, and duality

Theorem (Meyer/P, 2018)

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \; \middle| \; \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$



- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- 3 Reflexive Laplacian simplices, codes, and duality
- 4 Analysis
- 5 Future research

$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

- $|\mathcal{C}(\Delta_G)| = n\tau(G).$
- $lack \langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G).$

- $|\mathcal{C}(\Delta_G)| = n\tau(G).$
- $lack \langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.

- $|\mathcal{C}(\Delta_G)| = n\tau(G).$
- $lack \langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.
- If G and G' are isomorphic then $\mathcal{C}(\Delta_G)$ and $\mathcal{C}(\Delta_{G'})$ are permutation equivalent.

- $|\mathcal{C}(\Delta_G)| = n\tau(G).$
- $lack \langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.
- If G and G' are isomorphic then $\mathcal{C}(\Delta_G)$ and $\mathcal{C}(\Delta_{G'})$ are permutation equivalent. The converse is not true!

■ Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$.

Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n 1.
- Let $G = K_n$ and let $C := C(\Delta_{K_n})$. Then $|C| = n^{n-1}$.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\text{rate}(\mathcal{C}) = (n-1)/n$ and $\text{dist}(\mathcal{C}) = 2$.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\mathrm{rate}(\mathcal{C}) = (n-1)/n$ and $\mathrm{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\text{rate}(\mathcal{C}) = (n-1)/n$ and $\text{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

Theorem (Meyer/P, 2018)

Let $a \leq b$ be any natural numbers. Then there exists a graph G such that $C(\Delta_G)$ has rate arbitrarily close to a/b.

(Ehrhart) Theory of simplices Laplacian simplices Reflexive Laplacian simplices, codes, and duality Analysis Future research

Analysis

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\text{rate}(\mathcal{C}) = (n-1)/n$ and $\text{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

Theorem (Meyer/P, 2018)

Let $a \leq b$ be any natural numbers. Then there exists a graph G such that $\mathcal{C}(\Delta_G)$ has rate arbitrarily close to a/b.

Theorem (Meyer/P, 2018)

For any prime p, there exists a graph G such that $C(\Delta_G) \subseteq \mathbb{Z}_p^p$ is MDS and has rate (arbitrarily close to) 1/2.

Outline

- 1 (Ehrhart) Theory of simplices
- 2 Laplacian simplices
- 3 Reflexive Laplacian simplices, codes, and duality
- 4 Analysis
- 5 Future research

Conjecture

Let G be a graph with p vertices such that Δ_G is reflexive. Show that $\mathcal{C}(\Delta_G)$ is MDS.

Question

Do there exists any graphs such that $\mathcal{C}(\Delta_G)$ is self-dual?

Question

Do there exists any graphs such that $\mathcal{C}(\Delta_G)$ is self-dual?

Note: One needs a graph with 2n vertices and $(2n)^{n-1}$ spanning trees.

Question

Do there exists any graphs such that $C(\Delta_G)$ is self-dual?

Note: One needs a graph with 2n vertices and $(2n)^{n-1}$ spanning trees. A graph that satisfies this is $K_{2,2}$. However $\Delta_{K_{2,2}}$ is not reflexive.

Let G be a graph such that Δ_G is reflexive. Recall the (finite abelian group) $\Lambda(\Delta_G)$. For $\lambda \in \Lambda(\Delta_G)$ define

$$\operatorname{ht}(\lambda) := \sum_{j=1}^n \lambda_j$$

Let G be a graph such that Δ_G is reflexive. Recall the (finite abelian group) $\Lambda(\Delta_G)$. For $\lambda \in \Lambda(\Delta_G)$ define

$$\operatorname{ht}(\lambda) := \sum_{j=1}^n \lambda_j$$

Then it easy to see that

$$\operatorname{ht}(\lambda) + \operatorname{ht}(-\lambda) = \operatorname{wt}_{\mathsf{H}}(\lambda)$$

Let G be a graph such that Δ_G is reflexive. Recall the (finite abelian group) $\Lambda(\Delta_G)$. For $\lambda \in \Lambda(\Delta_G)$ define

$$\operatorname{ht}(\lambda) := \sum_{j=1}^n \lambda_j$$

Then it easy to see that

$$\operatorname{ht}(\lambda) + \operatorname{ht}(-\lambda) = \operatorname{wt}_{\mathsf{H}}(\lambda)$$

Question

Can one use MacWilliams duality to better understand the h^* -vector of the dual of a simplex?