Quantum Private Information Retrieval

Private Information Retrieval with Entangled Servers

Tefjol Pllaha Joint with M. Allaix, L. Holzbaur, and C. Hollanti

Department of Communications and Networking Aalto University, Finland

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...
- Increased demand/awareness for privacy.
 - Anonymization, differential privacy, data protection laws ...

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...
- Increased demand/awareness for privacy.
 - Anonymization, differential privacy, data protection laws ...
- Quest for practical solutions continues.

m files $x^1, \ldots, x^m \in \mathbb{F}_q^{\beta \times k}$ are encoded and stored on *n* servers by a [n, k] storage code C.

Private Information Retrieval (PIR)

Private Information Retrieval (PIR)

Private Information Retrieval (PIR)

Definition (t-PIR).

User privacy: Any set of at most *t* colluding nodes learns no information about the index *i* of the desired file, *i.e.*, the mutual information

$$I(i; Q_{\mathcal{T}}^{K}, R_{\mathcal{T}}^{K}, y_{\mathcal{T}}) = 0, \quad \forall \ \mathcal{T} \subset [n], |\mathcal{T}| \leq t \ .$$

Server privacy: The user does not learn any information about the files other than the requested one, *i.e.*,

$$I(x^{j}; Q^{K}, R^{K}, K) = 0, \quad \forall j \neq K .$$

A scheme with both user and server privacy is called symmetric.

Definition (Rate and Capacity).

For a PIR scheme the **rate** is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

 $R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$.

The PIR **capacity** is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers".

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers".

Motivated by the work of Seunghoan Song and Masahito Hayashi

- arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
- Replicated storage with t = n 1 collusion.

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers".

Motivated by the work of Seunghoan Song and Masahito Hayashi

- arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
- Replicated storage with t = n 1 collusion.
- Goal: [n, k] coded storage with t = n k collusion.

- Star Product PIR scheme from Freij-Hollanti et al.
 - Coded storage with storage code \mathcal{C} .
 - A retrieval code ${\cal D}$ that determines the privacy.
 - Scheme with rate (d_{C*D} − 1)/n that protects against d_{D[⊥]} − 1 collusions.

- Star Product PIR scheme from Freij-Hollanti et al.
 - Coded storage with storage code \mathcal{C} .
 - $\bullet\,$ A retrieval code ${\cal D}$ that determines the privacy.
 - Scheme with rate $(d_{\mathcal{C}\star\mathcal{D}}-1)/n$ that protects against $d_{\mathcal{D}^{\perp}}-1$ collusions.
 - $d_{\mathcal{C}_1 \star \mathcal{C}_2} 1 \leq \max\{0, n (\dim(\mathcal{C}_1) + \dim(\mathcal{C}_2) 1)\}.$

- Star Product PIR scheme from Freij-Hollanti et al.
 - Coded storage with storage code $\mathcal{C}.$
 - A retrieval code ${\mathcal D}$ that determines the privacy.
 - Scheme with rate $(d_{\mathcal{C}\star\mathcal{D}}-1)/n$ that protects against $d_{\mathcal{D}^{\perp}}-1$ collusions.
 - $d_{\mathcal{C}_1 \star \mathcal{C}_2} 1 \leq \max\{0, n (\dim(\mathcal{C}_1) + \dim(\mathcal{C}_2) 1)\}.$
- Generalized Reed-Solomon codes

$$\mathsf{GRS}_k(\alpha, \mathbf{v}) = \{ (\mathbf{v}_i f(\alpha_i))_{1 \le i \le n} \mid f(\mathbf{x}) \in \mathbb{F}_q^{< k}[\mathbf{x}] \}.$$

- Star Product PIR scheme from Freij-Hollanti et al.
 - Coded storage with storage code $\mathcal{C}.$
 - $\bullet\,$ A retrieval code ${\cal D}$ that determines the privacy.
 - Scheme with rate (d_{C*D} − 1)/n that protects against d_{D[⊥]} − 1 collusions.
 - $d_{\mathcal{C}_1 \star \mathcal{C}_2} 1 \leq \max\{0, n (\dim(\mathcal{C}_1) + \dim(\mathcal{C}_2) 1)\}.$
- Generalized Reed-Solomon codes

$$\mathsf{GRS}_k(\alpha, \mathbf{v}) = \{ (\mathbf{v}_i f(\alpha_i))_{1 \le i \le n} \mid f(\mathbf{x}) \in \mathbb{F}_q^{< k}[\mathbf{x}] \}.$$

• Quantum Computation.

• Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $W(a, b) = X^a Z^b$.

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $\mathbf{W}(a, b) = \mathbf{X}^{a}\mathbf{Z}^{b}$.
- The PVM

$$\mathcal{B}_{\mathbb{F}_2^2} = \{ \mathbf{B}_{(a,b)} = \mathbf{W}_1(a,b) | \Phi \rangle \langle \Phi | \mathbf{W}_1(a,b)^{\mathrm{t}} | a, b \in \mathbb{F}_2 \}.$$

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $\mathbf{W}(a, b) = \mathbf{X}^{a}\mathbf{Z}^{b}$.
- The PVM

 $\mathcal{B}_{\mathbb{F}_2^2} = \{ \mathbf{B}_{(a,b)} = \mathbf{W}_1(a,b) | \Phi \rangle \langle \Phi | \mathbf{W}_1(a,b)^{\mathrm{t}} | a, b \in \mathbb{F}_2 \}.$

• **Two-Sum Protocol**: Alice and Bob send the sum $(a_1 + b_1, a_2 + b_2)$ of their bits to Carol.

• n = 4 servers and $[4, 2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

• n = 4 servers and $[4, 2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

- Files: *m* files in $x^i \in \mathbb{F}_4^{\beta \times k}$
 - $\beta = 1$ and k = 2 (determined by encoding).

•
$$x^i = (x_1^i, x_2^i).$$

• k also determines the number of rounds.

• n = 4 servers and $[4, 2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

- Files: *m* files in $x^i \in \mathbb{F}_4^{\beta \times k}$
 - $\beta = 1$ and k = 2 (determined by encoding).

•
$$x^i = (x_1^i, x_2^i).$$

- *k* also determines the number of rounds.
- Query index K, i.e., the requested file is $x^{K} = (x_{1}^{K}, x_{2}^{K})$.

A QPIR Example: Entangled Servers

• Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.

- Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.
- Encode Z_1, Z_2 as codewords of the **dual** code:

$$(Q_1, Q_2, Q_3, Q_4) = (Z_1, Z_2) \cdot \mathbf{G}_{\mathcal{C}^{\perp}} + \xi_{K,1}$$

= $[Z_1, Z_2, \alpha^2 Z_1 + \alpha Z_2, \alpha Z_1 + \alpha^2 Z_2^2] + \xi_{K,1}.$

- Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.
- Encode Z_1, Z_2 as codewords of the **dual** code:

$$\begin{aligned} (Q_1, Q_2, Q_3, Q_4) &= (Z_1, Z_2) \cdot \mathbf{G}_{\mathcal{C}^{\perp}} + \xi_{\mathcal{K}, 1} \\ &= [Z_1, Z_2, \alpha^2 Z_1 + \alpha Z_2, \alpha Z_1 + \alpha^2 Z_2^2] + \xi_{\mathcal{K}, 1}. \end{aligned}$$

• Query Q_s to server s.

• Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2.$

- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2.$
- Servers 1,4: W(H₁),
 W(H₄) to H₁, H₄,
 respectively.

- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2.$
- Servers 1,4: W(H₁),
 W(H₄) to H₁, H₄,
 respectively.
- Servers 2,3: $\mathbf{W}(H_s)$ to \mathcal{H}_s^L , Bell measurement on $\mathcal{H}_s^L \otimes \mathcal{H}_s^R$ with outcome $G_s \in \mathbb{F}_2^2$, $\mathbf{W}(G_s)$ to \mathcal{H}_s .

- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2.$
- Servers 1,4: W(H₁),
 W(H₄) to H₁, H₄,
 respectively.
- Servers 2,3: $\mathbf{W}(H_s)$ to \mathcal{H}_s^L , Bell measurement on $\mathcal{H}_s^L \otimes \mathcal{H}_s^R$ with outcome $G_s \in \mathbb{F}_2^2$, $\mathbf{W}(G_s)$ to \mathcal{H}_s .
- Each server sends its qubit to the user.

• Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .
- Repeat everything to retrieve x_2^K and build the **desired** file $x_2^K = (x_1^K, x_2^K)$.

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .
- Repeat everything to retrieve x_2^K and build the **desired** file $x_2^K = (x_1^K, x_2^K)$.

Remark

Here we targeted servers 1&2 (systematic encoding). Since the storage is MDS-coded, one can target any two (k in general) servers.

User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.

- User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.
- Server secrecy: obtained for any p because the received state of the user is independent of the fragments xⁱ_p with i ≠ K and the measurement outcome G^(p) is independent of any file.

- User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.
- Server secrecy: obtained for any p because the received state of the user is independent of the fragments xⁱ_p with i ≠ K and the measurement outcome G^(p) is independent of any file.

• **Rate**:
$$R = \frac{2 \cdot 2}{2 \cdot 4} = \frac{1}{2}$$

• Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.

- Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.
- Files: $\mathcal{X} = \left\{ x_b^i \in \mathbb{F}_{4^L}^k \mid i \in [m], b \in [\beta] \right\}$

- Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.
- Files: $\mathcal{X} = \left\{ x_b^i \in \mathbb{F}_{4^L}^k \mid i \in [m], b \in [\beta] \right\}$

• Stripes
$$x_b^i = (x_{b,1}^i, \dots, x_{b,k}^i)$$
.

- Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.
- Files: $\mathcal{X} = \left\{ x_b^i \in \mathbb{F}_{4^L}^k \mid i \in [m], b \in [\beta] \right\}$
 - Stripes $x_b^i = (x_{b,1}^i, \dots, x_{b,k}^i)$.
 - File size $F = 2kL\beta$.

- Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.
- Files: $\mathcal{X} = \left\{ x_b^i \in \mathbb{F}_{4^L}^k \mid i \in [m], b \in [\beta] \right\}$
 - Stripes $x_b^i = (x_{b,1}^i, \dots, x_{b,k}^i)$.
 - File size $F = 2kL\beta$.
- Encoding: $C = GRS_k(\alpha, \mathbf{1}^k)$.

- Base field: \mathbb{F}_{4^L} where $L = \min\{\ell \mid 4^\ell \ge n\}$.
- Files: $\mathcal{X} = \left\{ x_b^i \in \mathbb{F}_{4^L}^k \mid i \in [m], b \in [\beta] \right\}$
 - Stripes $x_b^i = (x_{b,1}^i, \dots, x_{b,k}^i)$.
 - File size $F = 2kL\beta$.
- Encoding: $C = GRS_k(\alpha, \mathbf{1}^k)$.
- Query index: K.

QPIR with *n* Servers

• $H_s, G_s \in \mathbb{F}_{4^L}$: packetization in vectors of $(\mathbb{F}_2^2)^L$.

- $H_s, G_s \in \mathbb{F}_{4^L}$: packetization in vectors of $(\mathbb{F}_2^2)^L$.
- Up to (n-k)-collusion: generate $t \le n-k$ random vectors in $(\mathbb{F}_{4^{\perp}})^m$, encode them with \mathcal{C}^{\perp} .

- $H_s, G_s \in \mathbb{F}_{4^L}$: packetization in vectors of $(\mathbb{F}_2^2)^L$.
- Up to (n k)-collusion: generate t ≤ n k random vectors in (𝔽₄⊥)^m, encode them with 𝒪⊥.
- Server secrecy: symmetric PIR scheme.

- $H_s, G_s \in \mathbb{F}_{4^L}$: packetization in vectors of $(\mathbb{F}_2^2)^L$.
- Up to (n k)-collusion: generate t ≤ n k random vectors in (𝔽₄⊥)^m, encode them with 𝒪⊥.
- Server secrecy: symmetric PIR scheme.
- Upload cost negligible to the file size.

- $H_s, G_s \in \mathbb{F}_{4^L}$: packetization in vectors of $(\mathbb{F}_2^2)^L$.
- Up to (n k)-collusion: generate t ≤ n k random vectors in (𝔽₄𝑢)^m, encode them with 𝒪[⊥].
- Server secrecy: symmetric PIR scheme.
- Upload cost negligible to the file size.
- **Rate**: With n = k + t

$$R_{\text{PIR}} = \begin{cases} \frac{2}{n}, & \text{if } n \text{ is even,} \\ \frac{2}{n+1}, & \text{if } n \text{ is odd,} \end{cases}$$

Definition

An [n, k] code C is said to have (r, ρ) -locality if there exists a partition $\mathcal{P} = \{\mathcal{A}_1, ..., \mathcal{A}_\mu\}$ of [n] into sets \mathcal{A}_I with $\mathcal{A}_I \leq r + \rho - 1, \ \forall I \in [\mu]$ such that for the distance of the code restricted to the positions indexed by \mathcal{A}_I it holds that $d(\mathcal{C}_{\mathcal{A}_I}) \geq \rho, \ \forall \ I \in [\mu].$

Definition

An [n, k] code C is said to have (r, ρ) -locality if there exists a partition $\mathcal{P} = \{\mathcal{A}_1, ..., \mathcal{A}_\mu\}$ of [n] into sets \mathcal{A}_l with $\mathcal{A}_l \leq r + \rho - 1, \ \forall l \in [\mu]$ such that for the distance of the code restricted to the positions indexed by \mathcal{A}_l it holds that $d(\mathcal{C}_{\mathcal{A}_l}) \geq \rho, \ \forall \ l \in [\mu].$

Optimal LRC achieve the Singleton-like bound

$$d \leq n-k+1-\left(\left\lceil \frac{k}{r}\right\rceil -1\right)(\rho-1).$$

Definition

An [n, k] code C is said to have (r, ρ) -locality if there exists a partition $\mathcal{P} = \{\mathcal{A}_1, ..., \mathcal{A}_\mu\}$ of [n] into sets \mathcal{A}_I with $\mathcal{A}_I \leq r + \rho - 1, \ \forall I \in [\mu]$ such that for the distance of the code restricted to the positions indexed by \mathcal{A}_I it holds that $d(\mathcal{C}_{\mathcal{A}_I}) \geq \rho, \ \forall I \in [\mu].$

Optimal LRC achieve the Singleton-like bound

$$d \leq n-k+1-\left(\left\lceil\frac{k}{r}\right\rceil-1\right)(\rho-1).$$

The local codes C_{A_l} of an optimal LRC C are $[r + \rho - 1, r]$ -MDS.

$$R_{\text{QPIR}} = \begin{cases} \frac{2}{r+t}, & \text{if } r+t \text{ is even,} \\ \frac{2}{r+t+1}, & \text{if } r+t \text{ is odd,} \end{cases}$$

.

$$R_{\text{QPIR}} = \begin{cases} \frac{2}{r+t}, & \text{if } r+t \text{ is even,} \\ \frac{2}{r+t+1}, & \text{if } r+t \text{ is odd,} \end{cases}$$

٠

• Improved retrieval rate.

$$R_{\text{QPIR}} = \begin{cases} \frac{2}{r+t}, & \text{if } r+t \text{ is even,} \\ \frac{2}{r+t+1}, & \text{if } r+t \text{ is odd,} \end{cases}$$

.

- Improved retrieval rate.
- Trade-off with server collusion/failure.

$$R_{\text{QPIR}} = \begin{cases} \frac{2}{r+t}, & \text{if } r+t \text{ is even,} \\ \frac{2}{r+t+1}, & \text{if } r+t \text{ is odd,} \end{cases}$$

- Improved retrieval rate.
- Trade-off with server collusion/failure.
 - t = ρ − 1 colluding nodes, provided that no more than t nodes collude per local group.
 - For such collusion patterns, the scheme can resist collusion of up to $t\mu = (\rho 1)\mu$ servers

Thank You!