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Some Milestones

• Chor et al. 1995: Seminal paper on PIR.

• Privacy only achievable by downloading the entire database.

• PIR schemes for replicated databases.

• Impractical due to storage overhead.

• Renewed interest from coded storages.

• Collusion, capacity, lower overhead...

• Increased demand/awareness for privacy.

• Anonymization, differential privacy, data protection laws ...

• Quest for practical solutions continues.
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Coded Storage

m files x1, . . . , xm ∈ Fβ×kq are encoded and stored on n servers by a

[n, k] storage code C.
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PIR with t-collusion (t-PIR)

Definition (t-PIR).

User privacy: Any set of at most t colluding nodes learns no

information about the index i of the desired file, i.e., the mutual

information

I (i ;QK
T ,R

K
T , yT ) = 0, ∀ T ⊂ [n], ∣T ∣ ≤ t .

Server privacy: The user does not learn any information about

the files other than the requested one, i.e.,

I (x j ;QK ,RK ,K) = 0, ∀j ≠ K .

A scheme with both user and server privacy is called symmetric.



PIR with t-collusion (t-PIR)

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of

the requested file retrieved per downloaded bits, i.e.,

RPIR =
Number of bits in a file

Number of downloaded bits
.

The PIR capacity is the supremum of PIR rates of all possible

PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with “entangled servers”.

Motivated by the work of Seunghoan Song and Masahito Hayashi

• arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209

• Replicated storage with t = n − 1 collusion.

• Goal: [n, k] coded storage with t = n − k collusion.
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Ingredients for QPIR

• Star Product PIR scheme from Freij-Hollanti et al.

• Coded storage with storage code C.

• A retrieval code D that determines the privacy.

• Scheme with rate (dC⋆D − 1)/n that protects against dD⊥ − 1

collusions.

• dC1⋆C2 − 1 ≤ max{0,n − (dim(C1) + dim(C2) − 1)}.

• Generalized Reed-Solomon codes

GRSk(α, v) = {(vi f (αi))1≤i≤n ∣ f (x) ∈ F<kq [x]}.

• Quantum Computation.
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Ingredients for QPIR: Quantum Computation

• Bell State ∣Φ⟩ = (∣00⟩ + ∣11⟩)/
√

2.

• Weyl Operator W(a,b) = XaZb.

• The PVM

BF2
2
= {B(a,b) = W1(a,b)∣Φ⟩⟨Φ∣W1(a,b)

t ∣ a,b ∈ F2}.

• Two-Sum Protocol: Alice and Bob send the sum

(a1 + b1, a2 + b2) of their bits to Carol.

W(a1, a2) ● H a1 + b1

W(b1,b2) a2 + b2

∣Φ⟩

⎧⎪⎪
⎨
⎪⎪⎩



Ingredients for QPIR: Quantum Computation

• Bell State ∣Φ⟩ = (∣00⟩ + ∣11⟩)/
√

2.

• Weyl Operator W(a,b) = XaZb.

• The PVM

BF2
2
= {B(a,b) = W1(a,b)∣Φ⟩⟨Φ∣W1(a,b)

t ∣ a,b ∈ F2}.

• Two-Sum Protocol: Alice and Bob send the sum

(a1 + b1, a2 + b2) of their bits to Carol.

W(a1, a2) ● H a1 + b1

W(b1,b2) a2 + b2

∣Φ⟩

⎧⎪⎪
⎨
⎪⎪⎩



Ingredients for QPIR: Quantum Computation

• Bell State ∣Φ⟩ = (∣00⟩ + ∣11⟩)/
√

2.

• Weyl Operator W(a,b) = XaZb.

• The PVM

BF2
2
= {B(a,b) = W1(a,b)∣Φ⟩⟨Φ∣W1(a,b)

t ∣ a,b ∈ F2}.

• Two-Sum Protocol: Alice and Bob send the sum

(a1 + b1, a2 + b2) of their bits to Carol.

W(a1, a2) ● H a1 + b1

W(b1,b2) a2 + b2

∣Φ⟩

⎧⎪⎪
⎨
⎪⎪⎩



Ingredients for QPIR: Quantum Computation

• Bell State ∣Φ⟩ = (∣00⟩ + ∣11⟩)/
√

2.

• Weyl Operator W(a,b) = XaZb.

• The PVM

BF2
2
= {B(a,b) = W1(a,b)∣Φ⟩⟨Φ∣W1(a,b)

t ∣ a,b ∈ F2}.

• Two-Sum Protocol: Alice and Bob send the sum

(a1 + b1, a2 + b2) of their bits to Carol.

W(a1, a2) ● H a1 + b1

W(b1,b2) a2 + b2

∣Φ⟩

⎧⎪⎪
⎨
⎪⎪⎩



A QPIR Example

• n = 4 servers and [4,2]4 - coded database with RS code

GC =
⎛

⎝

1 0 α2 α

0 1 α α2

⎞

⎠
.

• Files: m files in x i ∈ Fβ×k4

• β = 1 and k = 2 (determined by encoding).

• x i = (x i1, x
i
2).

• k also determines the number of rounds.

• Query index K , i.e., the requested file is xK = (xK1 , x
K
2 ).
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A QPIR Example: Entangled Servers

server1

x11
...
xm1
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...
xm2
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...
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...
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H1 HL
2

H2

HR
2 HL

3

H3

HR
3 H4

|Φ〉 |Φ〉

|Φ〉

|Φ〉
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A QPIR Example: Queries

• Generate two independent and uniformly random vectors

Z1,Z2 ∈ Fm
4 .

• Encode Z1,Z2 as codewords of the dual code:

(Q1,Q2,Q3,Q4) = (Z1,Z2) ⋅GC⊥ + ξK ,1

= [Z1,Z2, α
2Z1 + αZ2, αZ1 + α

2Z 2
2 ] + ξK ,1.

• Query Qs to server s.
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A QPIR Example: Servers’ Response

H1

W(H1)

server1

HL2

W(H2)

server2

HR2 HL3

W(H3)

server3

HR3 H4

server4

W(H4)

H1 H4

server1 server4

W(G2) W(G3)

H2 H3

server2 server3

user

|Φ〉 |Φ〉 |Φ〉

|Φ〉

(−1)φ4W
(∑4

s=1Hs +G
)
4
|Φ〉

Bell measurement

with outcome G2

Bell measurement

with outcome G3

Operation on

server4

10

• Each server computes

Hs = ⟨Qs ∣ ys ⟩ ∈ F4 = F2
2.

• Servers 1,4: W(H1),

W(H4) to H1, H4,

respectively.

• Servers 2,3: W(Hs) to HL
s ,

Bell measurement on

HL
s ⊗H

R
s with outcome

Gs ∈ F2
2, W(Gs) to Hs .

• Each server sends its qubit

to the user.
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A QPIR Example: Retrieval

• Measure H2 ⊗H3 to retrieve G = G2 +G3 (two-sum protocol).

• Apply W(G) to H4 and measure to retrieve xK1 .

• Repeat everything to retrieve xK2 and build the desired file

xK2 = (xK1 , x
K
2 ).

Remark

Here we targeted servers 1&2 (systematic encoding). Since the

storage is MDS-coded, one can target any two (k in general)

servers.
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A QPIR Example: Secrecy, Collusion, Rate

• User secrecy: queries Q1, . . . ,Q4 independent of the index

K , two random vectors generated and encoded into queries ⇒

at least three servers needed in order to retrieve the file

requested ⇒ 2-collusion.

• Server secrecy: obtained for any p because the received state

of the user is independent of the fragments x ip with i ≠ K and

the measurement outcome G (p) is independent of any file.

• Rate: R = 2⋅2
2⋅4 =

1
2 .
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QPIR with n Servers

• Base field: F4L where L = min{` ∣ 4` ≥ n}.

• Files: X = {x ib ∈ F
k
4L

∣ i ∈ [m],b ∈ [β]}

• Stripes x ib = (x ib,1, . . . , x
i
b,k).

• File size F = 2kLβ.

• Encoding: C = GRSk(α,1
k).

• Query index: K .
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QPIR with n Servers

server1

y11
...
ym1

· · ·

servern−1

y1n−1

...
ymn−1

servern

y1n
...
ymn

user

H(l,b,p)
1 HL,(l,b,p)

2

H(l,b,p)
2

server2

· · ·

· · ·

HR,(l,b,p)
n−2

H(l,b,p)
n−2

servern−2

HL,(l,b,p)
n−1

H(l,b,p)
n−1

HR,(l,b,p)
n−1

HA,(l,b,p)
n−1

if n

is odd

H(l,b,p)
n

Query index: K ∈ {1, . . . ,m} Outcome:
y
K,(l)
b,p ∈ F2

2

|Φ〉 |Φ〉

|Φ〉
if n

is even

|Φ〉

|Φ〉

Q
(p)
1

Q
(p)
n−1 Q

(p)
n

H(l,b,p)
1 H(l,b,p)

n−1

H(l,b,p)
n

Apply W
(
G(l,b,p)

)

on H(l,b,p)
n and

measure
H(l,b,p)

1 ⊗H(l,b,p)
n
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QPIR with n Servers

• Hs ,Gs ∈ F4L : packetization in vectors of (F2
2)

L.

• Up to (n − k)-collusion: generate t ≤ n − k random vectors in

(F4L)
m, encode them with C⊥.

• Server secrecy: symmetric PIR scheme.

• Upload cost negligible to the file size.

• Rate: With n = k + t

RPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
n , if n is even,
2

n+1 , if n is odd,



QPIR with n Servers

• Hs ,Gs ∈ F4L : packetization in vectors of (F2
2)

L.

• Up to (n − k)-collusion: generate t ≤ n − k random vectors in

(F4L)
m, encode them with C⊥.

• Server secrecy: symmetric PIR scheme.

• Upload cost negligible to the file size.

• Rate: With n = k + t

RPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
n , if n is even,
2

n+1 , if n is odd,



QPIR with n Servers

• Hs ,Gs ∈ F4L : packetization in vectors of (F2
2)

L.

• Up to (n − k)-collusion: generate t ≤ n − k random vectors in

(F4L)
m, encode them with C⊥.

• Server secrecy: symmetric PIR scheme.

• Upload cost negligible to the file size.

• Rate: With n = k + t

RPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
n , if n is even,
2

n+1 , if n is odd,



QPIR with n Servers

• Hs ,Gs ∈ F4L : packetization in vectors of (F2
2)

L.

• Up to (n − k)-collusion: generate t ≤ n − k random vectors in

(F4L)
m, encode them with C⊥.

• Server secrecy: symmetric PIR scheme.

• Upload cost negligible to the file size.

• Rate: With n = k + t

RPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
n , if n is even,
2

n+1 , if n is odd,



QPIR with n Servers

• Hs ,Gs ∈ F4L : packetization in vectors of (F2
2)

L.

• Up to (n − k)-collusion: generate t ≤ n − k random vectors in

(F4L)
m, encode them with C⊥.

• Server secrecy: symmetric PIR scheme.

• Upload cost negligible to the file size.

• Rate: With n = k + t

RPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
n , if n is even,
2

n+1 , if n is odd,



Improvements with Locally Repairable Codes (LRC)

Definition

An [n, k] code C is said to have (r , ρ)-locality if there exists a

partition P = {A1, ...,Aµ} of [n] into sets Al with

Al ≤ r + ρ − 1, ∀l ∈ [µ] such that for the distance of the code

restricted to the positions indexed by Al it holds that

d(CAl
) ≥ ρ, ∀ l ∈ [µ].

Optimal LRC achieve the Singleton-like bound

d ≤ n − k + 1 − (⌈
k

r
⌉ − 1) (ρ − 1).

The local codes CAl
of an optimal LRC C are [r + ρ − 1, r]-MDS.
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Improvements with Locally Repairable Codes (LRC)

For t = ρ − 1, the retrieval rate of LRC-based QPIR scheme is

RQPIR =

⎧⎪⎪
⎨
⎪⎪⎩

2
r+t , if r + t is even,

2
r+t+1 , if r + t is odd,

.

• Improved retrieval rate.

• Trade-off with server collusion/failure.

• t = ρ − 1 colluding nodes, provided that no more than t nodes

collude per local group.

• For such collusion patterns, the scheme can resist collusion of

up to tµ = (ρ − 1)µ servers
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Thank You!


