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Some Milestones

Chor et al. 1995: Seminal paper on PIR.
e Privacy only achievable by downloading the entire database.
e PIR schemes for replicated databases.
e Impractical due to storage overhead.

Renewed interest from coded storages.

e Collusion, capacity, lower overhead...

Increased demand/awareness for privacy.

e Anonymization, differential privacy, data protection laws ...

Quest for practical solutions continues.



Coded Storage

m files x1,... x™M € Fng are encoded and stored on n servers by a
[n, k] storage code C.
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PIR with t-collusion (t-PIR)

Definition (t-PIR).
User privacy: Any set of at most t colluding nodes learns no
information about the index i of the desired file, i.e., the mutual

information
1(i; QX R, yr)=0, VY Tc[n],|T|<t.

Server privacy: The user does not learn any information about
the files other than the requested one, i.e.,

I QX RK. K)=0, Vj+K.

A scheme with both user and server privacy is called symmetric.
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Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

Number of bits in a file

Rpir = .
PIR Number of downloaded bits

The PIR capacity is the supremum of PIR rates of all possible
PIR schemes, for a fixed parameter setting.
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Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

Number of bits in a file

Rpir = — .
Number of downloaded bits

The PIR capacity is the supremum of PIR rates of all possible

PIR schemes, for a fixed parameter setting.

Convention
QPIR is PIR with “entangled servers”.

Motivated by the work of Seunghoan Song and Masahito Hayashi

e arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
o Replicated storage with t = n—1 collusion.

e Goal: [n, k] coded storage with t = n— k collusion.
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Ingredients for QPIR

e Star Product PIR scheme from Freij-Hollanti et al.

e Coded storage with storage code C.
e A retrieval code D that determines the privacy.
e Scheme with rate (d¢.p — 1)/n that protects against dp. — 1

collusions.
e de.c, — 1 <max{0,n- (dim(Cy) +dim(C2) - 1)}.

e Generalized Reed-Solomon codes
GRSk(a, V) = {(Vif(ai))lgign | f(X) € F;k[x]}

e Quantum Computation.
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Ingredients for QPIR: Quantum Computation

Bell State |®) = (|00) + [11))/V/2.

Weyl Operator W(a, b) = X?Z>.
The PVM

B]F% = {B(a,b) = W1(37 b)’¢)<¢’W1(a, b)t ’ a,be FQ}
Two-Sum Protocol: Alice and Bob send the sum
(a1 + b1, az + by) of their bits to Carol.

ol

W(al, 32)

W (b1, b2)

H a1+ by

D
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A QPIR Example

e n =4 servers and [4,2]s - coded database with RS code
1 0 a® a
Ge = .
¢ ( 01 a o )

e Files: m files in x' € Fka
e $=1and k =2 (determined by encoding).
o x' = (x1,%).
e k also determines the number of rounds.

e Query index K, i.e., the requested file is x* = (x{<, x5%).



A QPIR Example: Entangled Servers

SERVER; SERVERy SERVER3 SERVER4

azz% + az% ax} + a%%

a?z + axl oz + o’a
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A QPIR Example: Queries

e Generate two independent and uniformly random vectors
Zl, ZQ € FT

e Encode 73, Z5 as codewords of the dual code:

(Q1, @2, Q3,Qs) = (Z£1,22) - Ger + €k 1

= [21,22,04221 + OéZQ,OéZl + 042222] +§K,1'

e Query Qs to server s.



A QPIR Example: Servers’ Response
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A QPIR Example: Servers’ Response

W (H,) W (H,) W (Hs) W (Hy)
@ & @ ‘ =
SERVER1 SERVER2 SERVER3 SERVER4
Bell measurement Bell measurement Operation on
with outcome Ga with outcome G3 SERVER4
SERVER| SERVER4

SERVER2

W(G2)

SERVER3

W(Gs)

Each server computes
Hs = (Qs|ys) € Fq = F2.

Servers 1,4: W(H,),
W(H4) to Hi, Ha,
respectively.

Servers 2,3: W(Hs) to HL,
Bell measurement on

HE ® HE with outcome

Gs € F2, W(G;) to Hs.

Each server sends its qubit
to the user.
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A QPIR Example: Retrieval

e Measure Hy ® H3 to retrieve G = Gy + Gz (two-sum protocol).
K

e Apply W(G) to H4 and measure to retrieve x;' .
° Repeat everything to retrieve x2K and build the desired file
X2 = (Xl , K)-
Remark
Here we targeted servers 1&2 (systematic encoding). Since the
storage is MDS-coded, one can target any two (k in general)

Servers.



A QPIR Example: Secrecy, Collusion, Rate

e User secrecy: queries @1, ..., Q4 independent of the index
K, two random vectors generated and encoded into queries =
at least three servers needed in order to retrieve the file
requested = 2-collusion.
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A QPIR Example: Secrecy, Collusion, Rate

e User secrecy: queries @1, ..., Q4 independent of the index K,
two random vectors generated and encoded into queries = at
least three servers needed in order to retrieve the file

requested = 2-collusion.

e Server secrecy: obtained for any p because the received state
of the user is independent of the fragments xlg with i # K and
the measurement outcome G(P) is independent of any file.
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QPIR with n Servers

Base field: F,. where L = min{¢|4% > n}.
Files: X = {x] eFX, |ie[m], be[B]}

e Stripes x] = (X;;,l, . ,X[';’k).

e File size F =2kLp.

Encoding: C = GRS, (a,1%).
Query index: K.



QPIR with n Servers

t 3
Query index: K € {1,...,m} Apply W(G("b'm) ﬁ&;)}o;n];ﬂ
on H5f’b‘P) and bp 2

measure
,Hgl,b.p) ® ,H;l,b.p)

SERVER{
1
Y1

SERVERp —2

SERVER2
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QPIR with n Servers

Hs, Gs € Fy1: packetization in vectors of (F3)E.

Up to (n - k)-collusion: generate t < n— k random vectors in
(Fy)™, encode them with C*.

Server secrecy: symmetric PIR scheme.

Upload cost negligible to the file size.
e Rate: With n=k+t

Rore %, if nis even,
PIR™) 2 if nis odd,



Improvements with Locally Repairable Codes (LRC)
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Improvements with Locally Repairable Codes (LRC)

Definition

An [n, k] code C is said to have (r, p)-locality if there exists a
partition P = {A1,..., A, } of [n] into sets A; with
Aj<r+p-1, Vle[u] such that for the distance of the code
restricted to the positions indexed by A; it holds that

d(Ca) 2 p, ¥ 1€ [
Optimal LRC achieve the Singleton-like bound
k
d< n—k+1—([—]—1)(p—l).
r

The local codes C 4, of an optimal LRC C are [r+p—-1,r]-MDS.
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Improvements with Locally Repairable Codes (LRC)

For t = p— 1, the retrieval rate of LRC-based QPIR scheme is

D) . .

= if r+tis even,
RqpIr = { L - ol

e It r+t s odd,

e Improved retrieval rate.
e Trade-off with server collusion/failure.
e t=p—1 colluding nodes, provided that no more than t nodes
collude per local group.
e For such collusion patterns, the scheme can resist collusion of
up to tu = (p—1)u servers



Thank You!



