Decomposition of Clifford Gates

2021 IEEE Global Communications Conference

Tefjol Pllaha Joint with K. Vollanto and O. Tirkkonen

Department of Mathematics University of Nebraska - Lincoln

- Brief Introduction and Motivation
- Connection between the Clifford Group and Symplectic Group
 - Clifford transvections and symplectic transvections
- A graphical approach for transvection decomposition
- A fast decomposition algorithm
- An example

Introduction and Motivation

• Pauli group, or the Heisenberg-Weyl group, on m qubits

$$\mathcal{HW}_{N} \coloneqq \{i^{k} \mathbf{D}(\mathbf{a}, \mathbf{b}) = i^{k} \mathbf{X}^{a_{1}} \mathbf{Z}^{b_{1}} \otimes \cdots \otimes \mathbf{X}^{a_{m}} \mathbf{Z}^{b_{m}} \mid (\mathbf{a}, \mathbf{b}) \in \mathbb{F}_{2}^{2m}, k \in \mathbb{Z}_{4}\} \subset \mathbb{U}(N)$$

- Hermitian elements in \mathcal{HW}_N are $\mathbf{E} = \mathbf{E}(\mathbf{a}, \mathbf{b}) \coloneqq i^{\mathbf{ab}^{t}} \mathbf{D}(\mathbf{a}, \mathbf{b})$.
- Every gate $\mathbf{U} \in \mathbb{U}(N)$ can be written as

$$\mathbf{U} = \frac{1}{N} \sum_{\mathbf{v} \in \mathbb{F}_2^{2m}} \operatorname{Tr}(\mathbf{E}(\mathbf{v})\mathbf{U}) \mathbf{E}(\mathbf{v})$$

• The *support*¹ of quantum gates:

 $\operatorname{supp}(\mathbf{U}) \coloneqq \{\mathbf{E}(\mathbf{v}) \in \mathcal{HW}_N \mid \operatorname{Tr}(\mathbf{E}(\mathbf{v})\mathbf{U}) \neq 0\}.$

¹Tefjol Pllaha et al. "Un-Weyl-ing the Clifford Hierarchy". In: *Quantum* 4 (Dec. 2020), p. 370.

- Clifford Group: Gates that fix $\mathcal{H}\mathcal{W}_N$ under conjugation.
- Clifford Group is supported in subgroups of $\mathcal{H}\mathcal{W}_N$
- Support of *standard* Clifford gates, that is, qubit permutations, diagonal gates, and (partial) Hadamard gates, can be computed in closed form²

Problem: What about the support of a general Clifford gate? What about gates on higher levels of the Clifford hierarchy?

Why do we care? Leverage the information encoded by the support to create efficient measurements.

²Pllaha et al., "Un-Weyl-ing the Clifford Hierarchy".

Clifford gates **G** on *m* qubits corresponds to $2m \times 2m$ symplectic matrices **F**

• Recall: **F** is symplectic iff
$$\mathbf{F}\mathbf{\Omega}\mathbf{F}^{t} = \mathbf{\Omega}$$
, where $\mathbf{\Omega} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix}$

Symplectic transvections: For $\mathbf{v} \in \mathbb{F}_2^{2m}$, $\mathbf{T}_{\mathbf{v}} \coloneqq \mathbf{I}_{2m} + \Omega \mathbf{v}^t \mathbf{v}$. Corresponding *Clifford transvection*: $\mathbf{G}_{\mathbf{v}} = \frac{1}{\sqrt{2}} (\mathbf{I}_N \pm i \mathbf{E}(\mathbf{v}))$. **Theorem:**³ Every sympletic matrix is a product of symplectic transvections. **Corollary:** Every Clifford gate is a product of Clifford transvections. **Goal:** Find these transvections.

This would also give the support.

³Onorato T. O'Meara. *Symplectic groups*. Vol. 16. Mathematical Surveys. American Mathematical Society, Providence, R.I., 1978, pp. xi+122.

A graphical approach

Let $\mathbf{F} = \mathbf{T}_{\mathbf{v}_1} \cdots \mathbf{T}_{\mathbf{v}_r}$ be a symplectic matrix. Stack the vectors $\mathbf{v}_1, \dots, \mathbf{v}_r$ to form a $r \times 2m$ matrix \mathbf{V} . Put $\mathbf{A}(\mathbf{v}_1, \dots, \mathbf{v}_r) \coloneqq \mathbf{V} \mathbf{\Omega} \mathbf{V}^t = [\langle \mathbf{v}_i, \mathbf{v}_j \rangle]_{i,j}$, which is symmetric and has all-zero diagonal. Consider $\mathbf{A}_u \coloneqq \text{triu}(\mathbf{A})$ and put

$$\mathbf{B}(\mathbf{v}_1,\ldots,\mathbf{v}_r)\coloneqq\sum_{\ell=0}^{r-1}\mathbf{A}_u^\ell.$$

Interpretation: A is the adjacency matrix of the *anti-commutation Pauli graph*, and **B** counts *all the directed paths* in this graph.

Theorem: For $\mathbf{F} = \mathbf{T}_{\mathbf{v}_1} \cdots \mathbf{T}_{\mathbf{v}_r}$ we have $\mathbf{F} = \mathbf{I} + \Omega \mathbf{V}^t \mathbf{B} \mathbf{V}$. **Definition:** $\widehat{\mathbf{F}} \coloneqq \Omega(\mathbf{I} + \mathbf{F}) = \mathbf{V}^t \mathbf{B} \mathbf{V} = \sum_{i,j} b_{i,j} \mathbf{v}_i^t \mathbf{v}_j$ is called the *residue matrix* of \mathbf{F} .

Decomposition

Theorem: In most cases, for a symplectic **F** 1. there exists an invertible matrix **P** such that $\mathbf{P}\widehat{\mathbf{F}}\mathbf{P}^{t} = \begin{vmatrix} \mathbf{B}^{-\iota} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{vmatrix}$ 2. $\mathbf{F} = \mathbf{T}_{\mathbf{v}_1} \cdots \mathbf{T}_{\mathbf{v}_r}$, where \mathbf{v}_i is row *i* of $\mathbf{P} \widehat{\mathbf{F}}$. Example: For the Clifford *CNOT* we have $\mathbf{F} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ and $\widehat{\mathbf{F}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. **First:** $\mathbf{F} \leftarrow \mathbf{FT}_{\mathbf{v}_0}$, where $\mathbf{v}_0 = 0010$ (the first non-zero row of $\widehat{\mathbf{F}}$). for which $\mathbf{F} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \text{ and } \widehat{\mathbf{F}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

7/9

Decomposition (continued)

$$CNOT = \frac{1-i}{\sqrt{2}} \frac{(\mathbf{I}+i\mathbf{I}\otimes\mathbf{X})(\mathbf{I}-i\mathbf{Z}\otimes\mathbf{X})(\mathbf{I}+i\mathbf{Z}\otimes\mathbf{I})}{\sqrt{8}}$$
$$= \frac{1}{2} (\mathbf{I}_4 + \mathbf{Z}\otimes\mathbf{I} + \mathbf{I}\otimes\mathbf{X} - \mathbf{Z}\otimes\mathbf{X})$$

Thank You!