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Frobenius Rings

R will denote a finite commutative ring with identity.

R̂ := Hom(R,C∗) will denote the character group.

R̂ ∼= R as groups.
R̂ is a R-module structure via

(r ·χ)(x) := χ(rx), for all r , x ∈ R and χ ∈ R̂.

R is called Frobenius if R R̂ ∼=RR as R-modules.

There exists χ ∈ R̂ such that R̂ = {r ·χ | r ∈ R}.
Such χ is called generating character.
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Stabilizer Codes

For any n ∈ N, the map 〈· | ·〉s : R2n × R2n → R defined as

〈(a, b) | (a′, b′)〉s := b ·a′ − b′ ·a
is a non-degenerate, symplectic, bilinear form.

For A ⊆ R2n, A⊥ := {x ∈ R2n | 〈x | A〉s = 0}.

Definition

A submodule C ≤ R2n is called a stabilizer code (of length n) if
C ⊆ C⊥.

The symplectic weight is wts(a, b) := |{i | (ai , bi ) 6= (0, 0)}|.
The minimum distance of a stabilizer code is

dist(C ) :=

{
min{wts(a, b) | (a, b) ∈ C⊥ − C} if C ( C⊥

min{wts(a, b) | (a, b) ∈ C⊥ − {0}} if C = C⊥
.
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Symplectic Isometries

Let A ≤ R2n be a submodule. A linear map f : A→ R2n is called a
symplectic isometry if for all x , y ∈ R2n

wts(x) = wts(f (x)) and 〈x | y〉s = 〈f (x) | f (y)〉s.

Example

1 For a permutation σ ∈ Sn, (a, b) 7→ (σ(a), σ(b)).

2 (a, b) 7→ (· · · , ai−1, bi , ai+1, · · · , · · · , bi−1,−ai , bi+1, · · · ).
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Symplectic Isometries of R2n

Question

What is the structure of isometries of R2n?

To answer this question we transfer the problem on (R2)n via
the change of coordinates

γ : R2n → (R2)n, (a, b) 7→ (a1, b1 | · · · | an, bn).

The symplectic weight now becomes the Hamming weight on
R2, that is, wtH(x) = wts(γ

−1(x)) for all x ∈ (R2)n.

Define 〈x | y〉 := 〈γ−1(x) | γ−1(y)〉s for all x , y ∈ (R2)n.

For a linear map f : R2n → R2n, denote f̃ := γ ◦ f ◦ γ−1.
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Symplectic Isometries of R2n

Theorem (Gluesing-Luerssen, P)

A linear map f : R2n → R2n is a symplectic isometry iff the map
f̃ : (R2)n → (R2)n is given by

f̃ = diag(A1, · · · ,An)(P ⊗ I2),

for Ai ∈ SL2(R).

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries f : A ( R2n → R2n?

Although this question is interesting for submodule A ≤ R2n,
we are interested on stabilizer codes.
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Symplectic Isometries of Stabilizer Codes

Let C ≤ R2n be a stabilizer code. We define two groups:

MonSL(C ) := {f ∈ Aut(C ) | f is monomial}
Symp(C ) := {f ∈ Aut(C ) | f is symplectic isometry}

MonSL(C ) ⊆ Symp(C ).

Fact: MonSL(C ) ( Symp(C ).
Reason: Explicit construction of a stabilizer code that does
not admit a monomial symplectic isometry.

Computing Symp(C ) is unrealistic in general. An easier
question is the following.

Open Problem

How different can the groups MonSL(C ) and Symp(C ) be?
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Minimum distance of a Stabilizer Code

Let R be a local Frobenius ring with maximal ideal m, and
k := R/m the residue field.

Let C ≤ R2n be a free stabilizer code. Denote C ≤ k2n

coordinate-wise projection of C onto k .

C is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

dist(C ) ≤ dist(C )

The theorem says that stabilizer codes over local Frobenius
rings cannot over-perform stabilizer codes over fields.

When C = C⊥ we have equality.

When C ( C⊥, we don’t know. However, computational and
theoretical data suggest that equality still holds.
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Minimum distance of a Stabilizer Code

Conjecture

Stabilizer codes over local Frobenius rings perform as good as
stabilizer codes over fields.
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Thank You!
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