(On Quantum) Stabilizer Codes over Local Frobenius Rings

Tefjol Pllaha

Department of Mathematics University of Kentucky

Joint Mathematics Meetings 2018 San Diego, CA January 12, 2018

Department of Mathematics University of Kentucky

Department of Mathematics University of Kentucky

1 Frobenius Rings

2 Stabilizer Codes

- ▲日を ▲聞を ▲団を ▲団を 一回 そうの

Department of Mathematics University of Kentucky

1 Frobenius Rings

2 Stabilizer Codes

3 Symplectic Isometries of Stabilizer Codes

Department of Mathematics University of Kentucky

・ロト ・日下・ ・日下

1 Frobenius Rings

2 Stabilizer Codes

3 Symplectic Isometries of Stabilizer Codes

4 Minimum distance of a Stabilizer Code

Department of Mathematics University of Kentucky

- ・ロト ・@ ト ・ヨト ・ヨー りへの

Department of Mathematics University of Kentucky

R will denote a finite commutative ring with identity.

Department of Mathematics University of Kentucky

R will denote a finite commutative ring with identity.
 R̂ := Hom(*R*, C^{*}) will denote the character group.

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

- *R* will denote a finite commutative ring with identity.
- *R* := Hom(*R*, ℂ*) will denote the character group.
 R ≅ *R* as groups.

Department of Mathematics University of Kentucky

/⊒ > < ∃ >

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \operatorname{Hom}(R, \mathbb{C}^*)$ will denote the **character group**.

•
$$\widehat{R} \cong R$$
 as groups.

R is a R-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

Department of Mathematics University of Kentucky

◆ 同 → ◆ 三 →

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \operatorname{Hom}(R, \mathbb{C}^*)$ will denote the **character group**.

•
$$\widehat{R} \cong R$$
 as groups.

R is a R-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

• *R* is called **Frobenius** if $_R\widehat{R} \cong_R R$ as *R*-modules.

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \operatorname{Hom}(R, \mathbb{C}^*)$ will denote the **character group**.

•
$$\widehat{R} \cong R$$
 as groups.

 \widehat{R} is a *R*-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

■ *R* is called **Frobenius** if $_{R}\hat{R} \cong_{R} R$ as *R*-modules. ■ There exists $\chi \in \hat{R}$ such that $\hat{R} = \{r \cdot \chi \mid r \in R\}$.

Department of Mathematics University of Kentucky

- R will denote a finite commutative ring with identity.
- $\widehat{R} := \text{Hom}(R, \mathbb{C}^*)$ will denote the **character group**.

$$\widehat{R} \cong R \text{ as groups.}$$

R is a R-module structure via

$$(r \cdot \chi)(x) := \chi(rx)$$
, for all $r, x \in R$ and $\chi \in \widehat{R}$.

- *R* is called **Frobenius** if $_R\widehat{R} \cong_R R$ as *R*-modules.
 - There exists $\chi \in \widehat{R}$ such that $\widehat{R} = \{r \cdot \chi \mid r \in R\}$.
 - Such χ is called **generating character**.

Department of Mathematics University of Kentucky

▲御 ▶ ▲ 臣 ▶

1 Frobenius Rings

2 Stabilizer Codes

3 Symplectic Isometries of Stabilizer Codes

4 Minimum distance of a Stabilizer Code

◆ □ ▶ ◆ 圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ 釣ぬ()

Department of Mathematics University of Kentucky

• For any $n \in \mathbb{N}$, the map $\langle \cdot \mid \cdot
angle_{\mathsf{s}} : R^{2n} imes R^{2n} o R$ defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \!\cdot\! a' - b' \!\cdot\! a$$

is a non-degenerate, symplectic, bilinear form.

Department of Mathematics University of Kentucky

• For any $n \in \mathbb{N}$, the map $\langle \cdot | \cdot \rangle_{s} : R^{2n} \times R^{2n} \to R$ defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \!\cdot\! a' - b' \!\cdot\! a$$

is a non-degenerate, symplectic, bilinear form. For $A \subseteq R^{2n}$, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_s = 0\}$.

Department of Mathematics University of Kentucky

A (1) > A (1) > A

• For any $n \in \mathbb{N}$, the map $\langle \cdot \mid \cdot \rangle_{s} : R^{2n} \times R^{2n} \to R$ defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \!\cdot\! a' - b' \!\cdot\! a$$

is a non-degenerate, symplectic, bilinear form.

• For
$$A \subseteq R^{2n}$$
, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{s} = 0\}.$

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** (of length *n*) if $C \subseteq C^{\perp}$.

Department of Mathematics University of Kentucky

• For any $n \in \mathbb{N}$, the map $\langle \cdot \mid \cdot
angle_{\mathsf{s}} : R^{2n} imes R^{2n} o R$ defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \!\cdot\! a' - b' \!\cdot\! a$$

is a non-degenerate, symplectic, bilinear form.

For
$$A \subseteq R^{2n}$$
, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** (of length *n*) if $C \subseteq C^{\perp}$.

The symplectic weight is $wt_s(a, b) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|.$

• For any $n \in \mathbb{N}$, the map $\langle \cdot \mid \cdot
angle_{\mathsf{s}} : R^{2n} imes R^{2n} o R$ defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \!\cdot\! a' - b' \!\cdot\! a$$

is a non-degenerate, symplectic, bilinear form.

• For
$$A \subseteq R^{2n}$$
, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_{\mathsf{s}} = 0\}.$

Definition

A submodule $C \leq R^{2n}$ is called a **stabilizer code** (of length *n*) if $C \subseteq C^{\perp}$.

The symplectic weight is $wt_s(a, b) := |\{i \mid (a_i, b_i) \neq (0, 0)\}|$. The minimum distance of a stabilizer code is

$$\mathsf{dist}(\mathcal{C}) := \begin{cases} \min\{\mathsf{wt}_\mathsf{s}(a,b) \mid (a,b) \in \mathcal{C}^\perp - \mathcal{C}\} & \text{ if } \mathcal{C} \subsetneq \mathcal{C}^\perp \\ \min\{\mathsf{wt}_\mathsf{s}(a,b) \mid (a,b) \in \mathcal{C}^\perp - \{0\}\} & \text{ if } \mathcal{C} = \mathcal{C}^\perp \end{cases}.$$

1 Frobenius Rings

2 Stabilizer Codes

3 Symplectic Isometries of Stabilizer Codes

4 Minimum distance of a Stabilizer Code

▲□▶ ▲圖▶ ▲릴▶ ▲릴▶ = 편 ∽의익여

Department of Mathematics University of Kentucky

Department of Mathematics University of Kentucky

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

 $\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$

A (1) > A (1) > A

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$.

Department of Mathematics University of Kentucky

▲ @ ▶ ▲ @ ▶ ▲

Let $A \leq R^{2n}$ be a submodule. A linear map $f : A \rightarrow R^{2n}$ is called a **symplectic isometry** if for all $x, y \in R^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$. **2** $(a, b) \mapsto (\cdots, a_{i-1}, b_i, a_{i+1}, \cdots, \cdots, b_{i-1}, -a_i, b_{i+1}, \cdots)$.

Department of Mathematics University of Kentucky

<ロ> <四> <四> <日> <日> <日</p>

Department of Mathematics University of Kentucky

Question

What is the structure of isometries of R^{2n} ?

Department of Mathematics University of Kentucky

Question

What is the structure of isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

Question

What is the structure of isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

Question

What is the structure of isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.

• Define $\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$ for all $x, y \in (\mathbb{R}^2)^n$.

Department of Mathematics University of Kentucky

・ 回 ト ・ ヨ ト ・

Question

What is the structure of isometries of R^{2n} ?

 To answer this question we transfer the problem on (R²)ⁿ via the change of coordinates

$$\gamma: \mathbb{R}^{2n} \to (\mathbb{R}^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on R^2 , that is, wt_H(x) = wt_s($\gamma^{-1}(x)$) for all $x \in (R^2)^n$.

- Define $\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$ for all $x, y \in (R^2)^n$.
- For a linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$, denote $\widetilde{f} := \gamma \circ f \circ \gamma^{-1}$.

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

Department of Mathematics University of Kentucky

□→ < □→</p>

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)$$

for $A_i \in SL_2(R)$.

Department of Mathematics University of Kentucky

□→ < □→</p>

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

Department of Mathematics University of Kentucky

□→ < □→</p>

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries monomial isometries.

Department of Mathematics University of Kentucky

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq R^{2n} \to R^{2n}$?

▲ロ → ▲ □ → ■ □ →

Theorem (Gluesing-Luerssen, P)

A linear map $f : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{R}^2)^n \to (\mathbb{R}^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(R)$.

• We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq R^{2n} \to R^{2n}$?

Although this question is interesting for submodule $A \le R^{2n}$, we are interested on stabilizer codes.

Department of Mathematics University of Kentucky

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

Department of Mathematics University of Kentucky

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$

Department of Mathematics University of Kentucky

Let $C < R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := { $f \in Aut(C) \mid f$ is symplectic isometry}

Department of Mathematics University of Kentucky

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

• $Mon_{SL}(C) \subseteq Symp(C)$.

Department of Mathematics University of Kentucky

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

■
$$Mon_{SL}(C) \subseteq Symp(C)$$
.
■ Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

← □ → < □ → < ⊇ → < ⊇ → < ⊇ → ○ <
 ← □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → <

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $\begin{aligned} \mathsf{Mon}_{\mathsf{SL}}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is monomial} \} \\ \mathsf{Symp}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is symplectic isometry} \} \end{aligned}$

•
$$Mon_{SL}(C) \subseteq Symp(C)$$
.

Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Department of Mathematics University of Kentucky

・日・ ・ヨ・ ・

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $\begin{aligned} \mathsf{Mon}_{\mathsf{SL}}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is monomial} \} \\ \mathsf{Symp}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is symplectic isometry} \} \end{aligned}$

- $Mon_{SL}(C) \subseteq Symp(C)$.
 - **Fact:** $Mon_{SL}(C) \subsetneq Symp(C)$.
 - Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
- Computing Symp(C) is unrealistic in general. An easier question is the following.

Department of Mathematics University of Kentucky

Let $C \leq R^{2n}$ be a stabilizer code. We define two groups:

 $\begin{aligned} \mathsf{Mon}_{\mathsf{SL}}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is monomial} \} \\ \mathsf{Symp}(C) &:= \{ f \in \mathsf{Aut}(C) \mid f \text{ is symplectic isometry} \} \end{aligned}$

•
$$Mon_{SL}(C) \subseteq Symp(C)$$
.

Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

- Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
- Computing Symp(C) is unrealistic in general. An easier question is the following.

Open Problem

How different can the groups $Mon_{SL}(C)$ and Symp(C) be?

Department of Mathematics University of Kentucky

1 Frobenius Rings

2 Stabilizer Codes

3 Symplectic Isometries of Stabilizer Codes

4 Minimum distance of a Stabilizer Code

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≧ → つへ()

Department of Mathematics University of Kentucky

Department of Mathematics University of Kentucky

■ Let *R* be a local Frobenius ring with maximal ideal m, and *k* := *R*/m the residue field.

Department of Mathematics University of Kentucky

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Department of Mathematics University of Kentucky

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let C ≤ R²ⁿ be a free stabilizer code. Denote C ≤ k²ⁿ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

 $dist(C) \leq dist(\overline{C})$

Department of Mathematics University of Kentucky

□→ < □→</p>

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

 $\textit{dist}(C) \leq \textit{dist}(\overline{C})$

The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.

Department of Mathematics University of Kentucky

◆ 同 → ◆ 三 →

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

 $dist(C) \leq dist(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.

Department of Mathematics University of Kentucky

A (1) > A (1) > A

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let C ≤ R²ⁿ be a free stabilizer code. Denote C ≤ k²ⁿ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

 $dist(C) \leq dist(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.
- When $C \subsetneq C^{\perp}$, we don't know.

▲ @ ▶ ▲ @ ▶ ▲

- Let R be a local Frobenius ring with maximal ideal m, and k := R/m the residue field.
- Let $C \leq R^{2n}$ be a *free* stabilizer code. Denote $\overline{C} \leq k^{2n}$ coordinate-wise projection of C onto k.
 - \overline{C} is a stabilizer code over k.

Theorem (Gluesing-Luerssen, P)

 $\textit{dist}(C) \leq \textit{dist}(\overline{C})$

- The theorem says that stabilizer codes over local Frobenius rings cannot over-perform stabilizer codes over fields.
- When $C = C^{\perp}$ we have equality.
- When C ⊊ C[⊥], we don't know. However, computational and theoretical data suggest that equality still holds.

Conjecture

Stabilizer codes over local Frobenius rings perform as good as stabilizer codes over fields.

Department of Mathematics University of Kentucky

▲ 同 ▶ → 三 ▶

Thank You!

- ∢ ≣ → Department of Mathematics University of Kentucky

< 🗇 🕨