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m A simplex A in R? is a full-dimensional convex hull of d + 1
points vy, ..., Vg1 (in RY). Throughout we will focus on
lattice simplices.

i >o}g;RwH.
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m The fundamental parallelepiped of A is

d+1
{ZA (vi,1

m The h*-vector of A is h*(A) = (ho, h1, ..., hg) where

0<A<1}gR“P

hi = #{p € N(A)NZ* | pyyy = i}.



(Ehrhart) Theory of simplices:

/\(A) = {)\ = ()\1, 000 7)\d+1)

d+1
> Xi(vi 1) € N(A) N Zd“} :

i=1



(Ehrhart) Theory of simplices:

/\(A) = {)\ = ()\1, 000 7)\d+1)

d+1
> Xi(vi 1) € N(A) N Zd“} :

i=1

= A(D) < (Q/Z)%*



(Ehrhart) Theory of simplices:

/\(A) = {)\ = ()\1, 000 7)\d+1)

d+1
> Xi(vi 1) € N(A) N Zd“} :

i=1
= A(A) < (Q/Z)4*! with addition
()\1’ cee 7)‘d+1)+()\?la B ij—‘,—l) = ({)‘1"')‘;_}’ SR {)‘d+1+>‘:1+1})7

where {+} denotes the fractional part of a number.



(Ehrhart) Theory of simplices:

d+1
> Xi(vi 1) € N(A) N Zd“} :

ANA) = {)\ = (M, Ad+1)
i=1
m A(A) < (Q/Z)4* with addition

()\1’ cee 7)‘d+1)+()\?la B ij—‘,—l) ({)‘1"')‘ } {)‘d+1+>‘:1+1})7

where {+} denotes the fractional part of a number.

= NOTE: h,-:#{)\e/\ ‘Ed“)\ }



(Ehrhart) Theory of simplices:

d+1
> Xi(vi 1) € N(A) N Zd“} :

ANA) = {)\ = (M, Ad+1)
i=1
m A(A) < (Q/Z)4* with addition

(A -5 Aar)+(, - Agp) = [t d - et Aa ),
where {+} denotes the fractional part of a number.

= NOTE: b = # {A e A(A ‘Ed“)\ i}
ht(\) := Y71 \; is called the height of A.
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Laplacian simplices

m Let G be a simple connected graph with n vertices. Denote Lg
its Laplacian matrix and 7(G) the number of spanning trees.

m Denote Lg(n) the matrix obtained from Lg with the nt"
column removed and [Lg(n) | 1] the matrix Lg(n) with a
column of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of Lg(n), denoted Ag, is called the
Laplacian simplex associated to G.
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Laplacian simplices

m Let A€ Z"*" be a square matrix. View A as the Z-module
homomorphism A : Z! — Z7 | x — XA.

m Then ker A, im A are additive codes over Z,.
m We have (ker A)L = im (AT).

Theorem (Braun/Meyer, 2017)

Let G be a simple connected graph on n vertices. Then

A(Ag) = {W

x € kerz, o [L(n) | 1]} .
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m A is called reflexive if h* is symmetric.
m If 0 € A then the dual of A is given by

N ={xecRY|xy' <1forallyecA}.

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Ag is
reflexive. Then

ANAg) = {% ’i € kerz, [L(n) | 1]}.

Definition

Let G be a simple connected graph on n vertices such that Ag is
reflexive. Then C(Ag) := kerz, [L(n) | 1] C Z} is called the
additive code associated to the (reflexive) Laplacian simplex
Ag.
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Theorem (Meyer/P, 2018)

Let G be a simple connected graph with n vertices such that the
associated A¢ is reflexive. Then

X

A(a6)) = {7 |xecae)'}.

Question
What is h*((Ag)”)?

m Recall the height ht(\) = S0\
m ht(\) + ht(—=X\) = wtpy(N).

m IDEA: Use MacWilliams Duality.
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Throughout G is a simple connected graph on n vertices such that
Ag is reflexive.

m |C(Ag)| = nT(G).

m (1) CC(Ag). Infact C(Ag) = (1) iff G is a tree.

m If G and G’ are isomorphic then C(Ag) and C(Ag) are
permutation equivalent. The converse is not true!
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Moreover, rate(C) = 2/n and dist(C) = n — 1.

m Let G = K, and let C := C(Ak,). Then |C| = n" 1,
Moreover, rate(C) = (n —1)/n and dist(C) = 2.

m Note that the codes above are all MDS.
Theorem (Meyer/P, 2018)

For any prime p, there exists a graph G such that C(Ag) C Zp is
MDS and has rate (arbitrarily close to) 1/2.

Theorem (Meyer/P, 2018)

Let a < b be any natural numbers. Then there exists a graph G
such that C(Ag) has rate arbitrarily close to a/b.



Thank You!



