Additive Codes Associated to Laplacian Simplices

Tefjol Pllaha

Department of Mathematics University of Kentucky http://www.ms.uky.edu/~tpl222

Joint Mathematics Meetings Baltimore, MD January 19, 2019

*Joint with Marie Meyer

2 Laplacian simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

4 Analysis

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

A simplex ∆ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d).

A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.

A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.

$$\operatorname{cone}(\Delta) = \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \; \middle| \; \lambda_i \geq 0
ight\} \subseteq \mathbb{R}^{d+1}.$$

A simplex △ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.

$$\mathsf{cone}(\Delta) = \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \; \middle| \; \lambda_i \geq 0
ight\} \subseteq \mathbb{R}^{d+1}.$$

• The fundamental parallelepiped of Δ is

$$\Pi(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \, \middle| \, 0 \leq \lambda_i < 1
ight\} \subseteq \mathbb{R}^{d+1}.$$

A simplex ∆ in ℝ^d is a full-dimensional convex hull of d + 1 points v₁,..., v_{d+1} (in ℝ^d). Throughout we will focus on lattice simplices.

$$\mathsf{cone}(\Delta) = \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \; \middle| \; \lambda_i \ge 0
ight\} \subseteq \mathbb{R}^{d+1}.$$

• The fundamental parallelepiped of Δ is

$$\Pi(\Delta) := \left\{ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \, \middle| \, 0 \leq \lambda_i < 1
ight\} \subseteq \mathbb{R}^{d+1}.$$

• The h^* -vector of Δ is $h^*(\Delta) = (h_0, h_1, \dots, h_d)$ where

$$h_i = \#\{\mathbf{p} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \mid \mathbf{p}_{d+1} = i\}.$$

$$\Lambda(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \ \left| \ \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \right\} \right.$$

$$\Lambda(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \mid \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \right\}$$
$$\bullet \Lambda(\Delta) \le (\mathbb{Q}/\mathbb{Z})^{d+1}$$

$$\Lambda(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \mid \sum_{i=1}^{d+1} \lambda_i(\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1} \right\}.$$

• $\Lambda(\Delta) \le (\mathbb{Q}/\mathbb{Z})^{d+1}$ with addition
 $(\lambda_1, \dots, \lambda_{d+1}) + (\lambda'_1, \dots, \lambda'_{d+1}) = (\{\lambda_1 + \lambda'_1\}, \dots, \{\lambda_{d+1} + \lambda'_{d+1}\}),$

where $\{\bullet\}$ denotes the fractional part of a number.

$$egin{aligned} & \wedge(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \; \middle| \; \sum_{i=1}^{d+1} \lambda_i (\mathbf{v}_i, 1) \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}
ight\}. \end{aligned}$$

•
$$\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$$
 with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

NOTE:
$$h_i = \# \left\{ \lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i \right\}.$$

$$egin{aligned} & \mathsf{A}(\Delta) := \left\{ \lambda = (\lambda_1, \dots, \lambda_{d+1}) \; \middle| \; \sum_{i=1}^{d+1} \lambda_i (\mathbf{v}_i, 1) \in \mathsf{\Pi}(\Delta) \cap \mathbb{Z}^{d+1}
ight\}. \end{aligned}$$

•
$$\Lambda(\Delta) \leq (\mathbb{Q}/\mathbb{Z})^{d+1}$$
 with addition

$$(\lambda_1,\ldots,\lambda_{d+1})+(\lambda'_1,\ldots,\lambda'_{d+1})=(\{\lambda_1+\lambda'_1\},\ldots,\{\lambda_{d+1}+\lambda'_{d+1}\}),$$

where $\{\bullet\}$ denotes the fractional part of a number.

• NOTE: $h_i = \# \left\{ \lambda \in \Lambda(\Delta) \mid \sum_{j=1}^{d+1} \lambda_j = i \right\}$. ht $(\lambda) := \sum_{j=1}^{d+1} \lambda_j$ is called the **height** of λ .

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

• Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote L_G(n) the matrix obtained from L_G with the nth column removed and [L_G(n) | 1] the matrix L_G(n) with a column of ones appended.

- Let G be a simple connected graph with n vertices. Denote L_G its Laplacian matrix and $\tau(G)$ the number of spanning trees.
- Denote $L_G(n)$ the matrix obtained from L_G with the n^{th} column removed and $[L_G(n) \mid 1]$ the matrix $L_G(n)$ with a column of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of $L_G(n)$, denoted Δ_G , is called the **Laplacian simplex associated to** *G*.

• Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$.

• Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$.

• Then ker A, im A are **additive codes** over \mathbb{Z}_m .

- Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$.
 - Then ker A, im A are **additive codes** over \mathbb{Z}_m .
 - We have $(\ker A)^{\perp} = \operatorname{im} (A^{\mathsf{T}})$.

• Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix. View A as the \mathbb{Z} -module homomorphism $A : \mathbb{Z}_m^n \to \mathbb{Z}_m^n$, $x \mapsto xA$.

- Then ker A, im A are **additive codes** over \mathbb{Z}_m .
- We have $(\ker A)^{\perp} = \operatorname{im}(A^{\mathsf{T}})$.

Theorem (Braun/Meyer, 2017)

Let G be a simple connected graph on n vertices. Then

$$\Lambda(\Delta_G) = \left\{ \frac{\mathbf{x}}{n\tau(G)} \, \middle| \, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_{n\tau(G)}}[L(n) \mid 1] \right\}$$

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

• Δ is called **reflexive** if h^* is symmetric.

• Δ is called **reflexive** if h^* is symmetric.

• If $\mathbf{0} \in \Delta$ then the **dual** of Δ is given by

Δ is called **reflexive** if h^{*} is symmetric.
If **0** ∈ Δ then the **dual** of Δ is given by

$$\Delta^{\!\!\vee}:=\{{f x}\in \mathbb{R}^d\mid {f x}\,{f y}^{\!\!\mathsf{T}}\leq 1 ext{ for all }{f y}\in \Delta\}\,.$$

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then

$$\Lambda(\Delta_G) = \left\{ \frac{\mathbf{x}}{n} \, \middle| \, \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_n}[L(n) \mid 1] \right\}.$$

Δ is called **reflexive** if h^{*} is symmetric.
If **0** ∈ Δ then the **dual** of Δ is given by

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then

$$\Lambda(\Delta_G) = \left\{ rac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \ker_{\mathbb{Z}_n}[L(n) \mid 1]
ight\}.$$

Definition

Let G be a simple connected graph on n vertices such that Δ_G is reflexive. Then $\mathcal{C}(\Delta_G) := \ker_{\mathbb{Z}_n} [\mathcal{L}(n) \mid 1] \subseteq \mathbb{Z}_n^n$ is called the **additive code associated to the (reflexive) Laplacian simplex** Δ_G .

Theorem (Meyer/P, 2018)

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$

Question

What is $h^*((\Delta_G)^{\vee})$?

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$

Question

What is $h^*((\Delta_G)^{\vee})$?

• Recall the height $ht(\lambda) = \sum_{j=1}^{d+1} \lambda_j$.

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$

Question

What is $h^*((\Delta_G)^{\vee})$?

• Recall the height $ht(\lambda) = \sum_{j=1}^{d+1} \lambda_j$.

•
$$ht(\lambda) + ht(-\lambda) = wt_H(\lambda)$$
.

Let G be a simple connected graph with n vertices such that the associated Δ_G is reflexive. Then

$$\Lambda((\Delta_G)^{\vee}) = \left\{ \frac{\mathbf{x}}{n} \mid \overline{\mathbf{x}} \in \mathcal{C}(\Delta_G)^{\perp} \right\}.$$

Question

What is $h^*((\Delta_G)^{\vee})$?

• Recall the height $ht(\lambda) = \sum_{j=1}^{d+1} \lambda_j$.

•
$$ht(\lambda) + ht(-\lambda) = wt_H(\lambda)$$
.

IDEA: Use MacWilliams Duality.

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

•
$$\langle 1 \rangle \subseteq \mathcal{C}(\Delta_G).$$

$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

•
$$\langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$$
. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.

$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

- $\langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.
- If G and G' are isomorphic then C(Δ_G) and C(Δ_{G'}) are permutation equivalent.

•
$$|\mathcal{C}(\Delta_G)| = n\tau(G).$$

- $\langle \overline{1} \rangle \subseteq \mathcal{C}(\Delta_G)$. In fact $\mathcal{C}(\Delta_G) = \langle \overline{1} \rangle$ iff G is a tree.
- If G and G' are isomorphic then C(∆_G) and C(∆_{G'}) are permutation equivalent. The converse is not true!

• Let $G = C_n$ for odd n and let $\mathcal{C} := \mathcal{C}(\Delta_{C_n})$. Then $|\mathcal{C}| = n^2$.

• Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.

• Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.

• Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\operatorname{rate}(\mathcal{C}) = (n-1)/n$ and $\operatorname{dist}(\mathcal{C}) = 2$.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\operatorname{rate}(\mathcal{C}) = (n-1)/n$ and $\operatorname{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\operatorname{rate}(\mathcal{C}) = (n-1)/n$ and $\operatorname{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

Theorem (Meyer/P, 2018)

For any prime p, there exists a graph G such that $\mathcal{C}(\Delta_G) \subseteq \mathbb{Z}_p^p$ is MDS and has rate (arbitrarily close to) 1/2.

- Let $G = C_n$ for odd n and let $C := C(\Delta_{C_n})$. Then $|C| = n^2$. Moreover, rate(C) = 2/n and dist(C) = n - 1.
- Let $G = K_n$ and let $\mathcal{C} := \mathcal{C}(\Delta_{K_n})$. Then $|\mathcal{C}| = n^{n-1}$. Moreover, $\operatorname{rate}(\mathcal{C}) = (n-1)/n$ and $\operatorname{dist}(\mathcal{C}) = 2$.
- Note that the codes above are all MDS.

Theorem (Meyer/P, 2018)

For any prime p, there exists a graph G such that $\mathcal{C}(\Delta_G) \subseteq \mathbb{Z}_p^p$ is MDS and has rate (arbitrarily close to) 1/2.

Theorem (Meyer/P, 2018)

Let $a \leq b$ be any natural numbers. Then there exists a graph G such that $C(\Delta_G)$ has rate arbitrarily close to a/b.

Thank You!