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(Ehrhart) Theory of simplices

A simplex ∆ in Rd is a full-dimensional convex hull of d + 1
points v1, . . . , vd+1 (in Rd).

Throughout we will focus on
lattice simplices.

cone(∆) =

{
d+1∑
i=1

λi (vi , 1)

∣∣∣∣∣ λi ≥ 0

}
⊆ Rd+1.
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Π(∆) :=

{
d+1∑
i=1

λi (vi , 1)

∣∣∣∣∣ 0 ≤ λi < 1

}
⊆ Rd+1.

The h∗-vector of ∆ is h∗(∆) = (h0, h1, . . . , hd) where

hi = #{p ∈ Π(∆) ∩ Zd+1 | pd+1 = i}.



(Ehrhart) Theory of simplices: A different approach

Λ(∆) :=

{
λ = (λ1, . . . , λd+1)

∣∣∣∣∣
d+1∑
i=1

λi (vi , 1) ∈ Π(∆) ∩ Zd+1

}
.

Λ(∆) ≤ (Q/Z)d+1 with addition

(λ1, . . . , λd+1)+(λ′1, . . . , λ
′
d+1) = ({λ1+λ′1}, . . . , {λd+1+λ′d+1}),

where {•} denotes the fractional part of a number.

NOTE: hi = #
{
λ ∈ Λ(∆)

∣∣∣∑d+1
j=1 λj = i

}
.

ht(λ) :=
∑d+1

j=1 λj is called the height of λ.



(Ehrhart) Theory of simplices: A different approach

Λ(∆) :=

{
λ = (λ1, . . . , λd+1)

∣∣∣∣∣
d+1∑
i=1

λi (vi , 1) ∈ Π(∆) ∩ Zd+1

}
.

Λ(∆) ≤ (Q/Z)d+1

with addition

(λ1, . . . , λd+1)+(λ′1, . . . , λ
′
d+1) = ({λ1+λ′1}, . . . , {λd+1+λ′d+1}),

where {•} denotes the fractional part of a number.

NOTE: hi = #
{
λ ∈ Λ(∆)

∣∣∣∑d+1
j=1 λj = i

}
.

ht(λ) :=
∑d+1

j=1 λj is called the height of λ.



(Ehrhart) Theory of simplices: A different approach

Λ(∆) :=

{
λ = (λ1, . . . , λd+1)

∣∣∣∣∣
d+1∑
i=1

λi (vi , 1) ∈ Π(∆) ∩ Zd+1

}
.

Λ(∆) ≤ (Q/Z)d+1 with addition

(λ1, . . . , λd+1)+(λ′1, . . . , λ
′
d+1) = ({λ1+λ′1}, . . . , {λd+1+λ′d+1}),

where {•} denotes the fractional part of a number.

NOTE: hi = #
{
λ ∈ Λ(∆)

∣∣∣∑d+1
j=1 λj = i

}
.

ht(λ) :=
∑d+1

j=1 λj is called the height of λ.



(Ehrhart) Theory of simplices: A different approach

Λ(∆) :=

{
λ = (λ1, . . . , λd+1)

∣∣∣∣∣
d+1∑
i=1

λi (vi , 1) ∈ Π(∆) ∩ Zd+1

}
.

Λ(∆) ≤ (Q/Z)d+1 with addition

(λ1, . . . , λd+1)+(λ′1, . . . , λ
′
d+1) = ({λ1+λ′1}, . . . , {λd+1+λ′d+1}),

where {•} denotes the fractional part of a number.

NOTE: hi = #
{
λ ∈ Λ(∆)

∣∣∣∑d+1
j=1 λj = i

}
.

ht(λ) :=
∑d+1

j=1 λj is called the height of λ.



(Ehrhart) Theory of simplices: A different approach

Λ(∆) :=

{
λ = (λ1, . . . , λd+1)

∣∣∣∣∣
d+1∑
i=1

λi (vi , 1) ∈ Π(∆) ∩ Zd+1

}
.

Λ(∆) ≤ (Q/Z)d+1 with addition

(λ1, . . . , λd+1)+(λ′1, . . . , λ
′
d+1) = ({λ1+λ′1}, . . . , {λd+1+λ′d+1}),

where {•} denotes the fractional part of a number.

NOTE: hi = #
{
λ ∈ Λ(∆)

∣∣∣∑d+1
j=1 λj = i

}
.

ht(λ) :=
∑d+1

j=1 λj is called the height of λ.



Outline

1 (Ehrhart) Theory of simplices

2 Laplacian simplices

3 Reflexive Laplacian simplices, codes, and duality

4 Analysis



Laplacian simplices

Let G be a simple connected graph with n vertices. Denote LG
its Laplacian matrix and τ(G ) the number of spanning trees.

Denote LG (n) the matrix obtained from LG with the nth

column removed and [LG (n) | 1] the matrix LG (n) with a
column of ones appended.

Definition (Braun/Meyer, 2017)

The convex hull of the rows of LG (n), denoted ∆G , is called the
Laplacian simplex associated to G .
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Laplacian simplices

Let A ∈ Zn×n be a square matrix. View A as the Z-module
homomorphism A : Zn

m → Zn
m, x 7→ xA.

Then kerA, imA are additive codes over Zm.
We have (kerA)⊥ = im (AT).

Theorem (Braun/Meyer, 2017)

Let G be a simple connected graph on n vertices. Then

Λ(∆G ) =

{
x

nτ(G )

∣∣∣∣ x ∈ kerZnτ(G)
[L(n) | 1]

}
.
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Reflexive Laplacian simplices, codes, and duality

∆ is called reflexive if h∗ is symmetric.

If 0 ∈ ∆ then the dual of ∆ is given by

∆
∨

:= {x ∈ Rd | x yT ≤ 1 for all y ∈ ∆} .

Theorem (Meyer/P, 2018)

Let G be a simple connected graph on n vertices such that ∆G is
reflexive. Then

Λ(∆G ) =
{x

n

∣∣∣ x ∈ kerZn [L(n) | 1]
}
.

Definition

Let G be a simple connected graph on n vertices such that ∆G is
reflexive. Then C(∆G ) := kerZn [L(n) | 1] ⊆ Zn

n is called the
additive code associated to the (reflexive) Laplacian simplex
∆G .
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Reflexive Laplacian simplices, codes, and duality

Theorem (Meyer/P, 2018)

Let G be a simple connected graph with n vertices such that the
associated ∆G is reflexive. Then

Λ((∆G )
∨

) =
{x

n

∣∣∣ x ∈ C(∆G )⊥
}
.

Question

What is h∗((∆G )
∨

)?

Recall the height ht(λ) =
∑d+1

j=1 λj .

ht(λ) + ht(−λ) = wtH(λ).

IDEA: Use MacWilliams Duality.
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Analysis

Throughout G is a simple connected graph on n vertices such that
∆G is reflexive.

|C(∆G )| = nτ(G ).

〈1〉 ⊆ C(∆G ).

In fact C(∆G ) = 〈1〉 iff G is a tree.

If G and G ′ are isomorphic then C(∆G ) and C(∆G ′) are
permutation equivalent. The converse is not true!
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Analysis

Let G = Cn for odd n and let C := C(∆Cn). Then |C| = n2.

Moreover, rate(C) = 2/n and dist(C) = n − 1.

Let G = Kn and let C := C(∆Kn). Then |C| = nn−1.
Moreover, rate(C) = (n − 1)/n and dist(C) = 2.

Note that the codes above are all MDS.

Theorem (Meyer/P, 2018)

For any prime p, there exists a graph G such that C(∆G ) ⊆ Zp
p is

MDS and has rate (arbitrarily close to) 1/2.

Theorem (Meyer/P, 2018)

Let a ≤ b be any natural numbers. Then there exists a graph G
such that C(∆G ) has rate arbitrarily close to a/b.
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