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The Power of Classical-Quantum Computation

Utilizing quantum resources to:

• increase performance, by boosting existing protocols.

• prove theoretical results, by leveraging new tools at disposal.

Distributed computations is a form of many-to-one
communication.

• Suffer from high communication cost, but various coding
techniques help.

What about quantum many-to-one communication?

• Quantum entanglement gives superdense coding gains.

• Readily available only to quantum experts.
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Objectives

Objective 1: Convenient abstraction for linear computation over
quantum many-to-one networks.
Objective 2: Explore its scope and limitations.
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Example - The Two-Sum Protocol
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N-Sum Boxes

Theorem

Let M ∈ FN×2N
q . Then there exists and N-Sum Box with transfer

matrix M if and only if

M

(
0 −In
In 0

)
MT = 0,

that is, if and only if M is “self-dual”.



N-Sum Boxes
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Coded Storage

m files x1, . . . , xm ∈ Fβ×k
q are encoded and stored on n servers by a

[n, k] storage code C.



x1
1,1 · · · x1

1,k
...

. . .
...

x1
β,1 · · · x1

β,k
...

...
...

xm1,1 · · · xm1,k
...

. . .
...

xmβ,1 · · · xmβ,k


· GC =



y1
1,1 · · · y1

1,n
...

. . .
...

y1
β,1 · · · y1

β,n
...

...
...

ym1,1 · · · ym1,n
...

. . .
...

ymβ,1 · · · ymβ,n



file 1

file m

server1 servern



Private Information Retrieval (PIR)

Q1

Qk

Qn



Private Information Retrieval (PIR)

Q1

R1

Qk Rk

Qn

Rn



Private Information Retrieval (PIR)

f (R1, . . . ,Rn) = x i

Q1

R1

Qk Rk

Qn

Rn



PIR with t-collusion (t-PIR)

Definition (t-PIR).
User privacy: Any set of at most t colluding nodes learns no
information about the index i of the desired file, i.e., the mutual
information

I (i ;QK
T ,RK

T , yT ) = 0, ∀ T ⊂ [n], |T | ≤ t .

Server privacy: The user does not learn any information about
the files other than the requested one, i.e.,

I (x j ;QK ,RK ,K ) = 0, ∀j ̸= K .

A scheme with both user and server privacy is called symmetric.



PIR with t-collusion (t-PIR)

Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

RPIR =
Number of bits in a file

Number of downloaded bits
.

The PIR capacity is the supremum of PIR rates of all possible
PIR schemes, for a fixed parameter setting.

Convention
QPIR is PIR with “entangled servers” and “quantum answers”.
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Ingredients for QPIR

• Quantum adaptation of existing schemes.

• Generalized Reed-Solomon codes

GRSk(α, v) = {(vi f (αi ))1≤i≤n | f (x) ∈ F<k
q [x ]}.

• Quantum Computation.
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A High-Rate Scheme for t-QPIR

Theorem [1]
There exists a t-QPIR scheme with rate

RQPIR =
2(n − k − t + 1)

n
.

1. M. Allaix, L. Holzbaur, T. Pllaha, C. Hollanti. “High-Rate Quantum Private Information Retrieval
with Weakly Self-Dual Star Product Codes,” In 2021 IEEE International Symposium on Information
Theory, 1046-1051.



Capacity [2]

2. M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti. “On the capacity of
quantum private information retrieval from MDS-coded and colluding servers,” IEEE Journal on Selected
Areas in Communications, vol. 40, no. 3, pp. 885-898, March 2022.



(s, t)-PIR with Byzantine Servers

Definition
A scheme is called s-secure if any set of s colluding servers learn
nothing about the messages.

Theorem

For MDS-(s, t)-PIR (s-secure, t-private information retrieval from
[N,Kc ] MDS coded storage among N > X + T + Kc − 1
distributed servers), there exists a scheme with rate

R = min

{
1, 2
(

1 −
(
X + T + Kc − 1

N

))}
.
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Idea of Proof
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Secure Distributed Batch Matrix Multiplication

Theorem

Let A1, · · · ,AL ∈ Fλ×η
q be L matrices XA-securely shared among

N servers and let B1, · · · ,BL ∈ Fη×µ
q another set of L matrices

XB -securely shared among the same N servers. The user wants to
compute the products A1B1,A2B2, · · · ,ALBL ∈ Fλ×µ

q by querying
the N > XA + XB servers. There exists a scheme with rate

R = min

{
1, 2
(

1 −
(
XA + XB

N

))}
.
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