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What about quantum many-to-one communication?

e Quantum entanglement gives superdense coding gains.

e Readily available only to quantum experts.
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Example - The Two-Sum Protocol
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N-Sum Boxes

Theorem

Let M € quvsz. Then there exists and N-Sum Box with transfer
matrix M if and only if

m( 0 o MT =0,
l, O

that is, if and only if M is “self-dual”.



N-Sum Boxes
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Coded Storage

m files xt, ... x™ € F2** are encoded and stored on n servers by a
[n, k] storage code C.
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PIR with t-collusion (t-PIR)

Definition (t-PIR).
User privacy: Any set of at most t colluding nodes learns no
information about the index i of the desired file, i.e., the mutual

information
I(i; X, RE yr) =0, VT C[n],|T|<t.

Server privacy: The user does not learn any information about
the files other than the requested one, i.e.,

I(; QX RK K) =0, Vj#K.

A scheme with both user and server privacy is called symmetric.
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Definition (Rate and Capacity).
For a PIR scheme the rate is the number of information bits of
the requested file retrieved per downloaded bits, i.e.,

Number of bits in a file
Number of downloaded bits

Rpir =

The PIR capacity is the supremum of PIR rates of all possible
PIR schemes, for a fixed parameter setting.
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Number of bits in a file
Number of downloaded bits

Rpir =

The PIR capacity is the supremum of PIR rates of all possible PIR
schemes, for a fixed parameter setting.

Convention

QPIR is PIR with “entangled servers” and “quantum answers".
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e Quantum adaptation of existing schemes.

e Generalized Reed-Solomon codes

GRSk (ar, v) = {(vif (ai))1<i<n | f(x) € Iﬁ‘jk[x]}.

e Quantum Computation.



A High-Rate Scheme for t-QPIR

Theorem [1]

There exists a t-QPIR scheme with rate
20n—k—t+1)

Rqpir = - -
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Capacity [2]
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(s, t)-PIR with Byzantine Servers

Definition
A scheme is called s-secure if any set of s colluding servers learn
nothing about the messages.

Theorem

For MDS-(s, t)-PIR (s-secure, t-private information retrieval from
[N, Kc] MDS coded storage among N > X + T + K. — 1
distributed servers), there exists a scheme with rate

oemiafs (7))




Idea of Proof
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Secure Distributed Batch Matrix Multiplication

Theorem
Let Ay,--- AL € FQX" be L matrices Xa-securely shared among
N servers and let By, - -+, B, € F§™" another set of L matrices

Xpg-securely shared among the same N servers. The user wants to
compute the products A1B1,AsBo,--- A/ B, € ]FZ\,X“ by querying
the N > X, + Xg servers. There exists a scheme with rate

oo moafi- (4374)))
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