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Massive Machine Type Communications (mMTC)



Random Access in mMTC



Framework

• M users, L active users, L≪M.

• Each active user u` transmits signal su` ∈ CN .

• Receiver sees

s = (
L

∑
`=1

c`su`) + n, c` ∈ C,n ∈ CN .

• Problem: Determine {u1, . . . ,uL} given s.
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• Solution 1: Restricted Isometric Property (RIP).

• Solution 2: Deterministic sensing matrices.
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• Throughout we will use N = 2m.

• Each active user u` transmits its preassigned signature
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larger than some threshold.

• High complexity: Requires M measurements!

• Key idea: Reed-Muller sequences in CN can be decoded with
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Binary Chirps

• Fix m ∈ N and S ∈ Sym(m) binary symmetric.

• Recall N = 2m. CN is indexed with Fm
2 (all vectors, complex or

binary, are column vectors).

• Define a unitary matrix US ∈ CN×N as

US(a,b) =
1

√
N
ia
t
Sa+2bta mod 4.

• A binary chirp (BC) is a column US,b.

• There are 2m ⋅ 2m(m+1)/2 BCs.

• If S has zero diagonal then US,b ∈ RN .

• There are 2m ⋅ 2m(m−1)/2 real BCs.

• BCs can be decoded with m + 1 measurements.
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Binary Subspace Chirps

Key idea: For 0 ≤ r ≤ m, embed all BCs in 2r dimensions to

N = 2m dimensions and consider all of them jointly.

• For P ∈ GL(m), P−t denotes the inverse transpose.

• Define a unitary matrix UP,S ∈ CN×N as

UP,S(a,b) =
1

√
2r

i(P
−1a)tS(P−1a)+2bt(P−1a) mod 4

⋅ f (b,P−1a, r),

where

f (x,y, r) =
m

∏
i=r+1

(1 + xi + yi).

• A binary subspace chirp (BSSC) is a column UP,S,b.

• Note: Not all choices of P,S give different BSSCs.
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Parametrization of BSSCs

Theorem

A rank r BSSC is characterized by H ∈ G(m, r) and Sr ∈ Sym(r).

• Write H = cs (HI) where HI is in CREF and I is the set of

pivots. Then put

P = PH = [HI IĨ].

• Note: P−t = [II H̃I], where (HI)
tH̃I = 0.

• Sym(r) is embedded in Sym(m) as the upper-left block.

• The total number of BSSCs is

2m ⋅
m

∑
r=0

2r(r+1)/2(
m

r
)
2
= 2m ⋅

m

∏
r=1

(2r + 1).

• ∣BSSC∣/∣BC∣ → 2.384...
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Algebra and Geometry of BSSCs

• The m-qubit Heisenberg-Weyl group is

HWN = {ikD(x,y) ∣ k = 0,1,2,3,x,y ∈ Fm
2 } ⊂ U(N)

where D(x,y) ∶ ev z→ (−1)vy
t
ev+x.

Theorem

(1) There are ∏m
r=1(2r + 1) maximal abelian subgroups if HWN .

(2) UP,S,r is the common eigenbase of a unique maximal abelian

subgroup of HWN .

(3) UP,S,r belongs to the normalizer of HWN in U(N), that is,

Clifford group CliffN .

Theorem

Let w be a rank r BSSCs with on-off pattern determined by

H = cs (HI). Then ∣w†D(0,y)w∣ ≠ 0 iff ytHI = 0.
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BSSC vs Noisy BSSC



Error probability of single transmission



Multi BSSCs (no noise)

Figure 1: Combination of a rank 2, rank 3, and rank 6 BSSCs in

N = 256.



Error probability of multiple transmissions



KEEP the DISTANCE

and

WORK from HOME


