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Massive Machine Type Communications (mMTC)
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Random Access in mMTC
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Framework

M users, L active users, L << M.

Each active user uy transmits signal s, € CcN.

Receiver sees

L
s= (ZCgsw) +n, ¢,eC,neCV.
=1

Problem: Determine {uy,...,u;} given s.
e Compressed Sensing Prospective:

o deCVM ceCM.

e Determine the support of c given s = dc.

e Design problem: Construct ® so that support recovery is
possible.

e Solution 1: Restricted Isometric Property (RIP).
e Solution 2: Deterministic sensing matrices.
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Signature Coding

e Throughout we will use N =2,

e Each active user vy transmits its preassigned signature
sy, €CN.

e Threshold Decoder: Declare user u active if |s's,,| is
larger than some threshold.

e High complexity: Requires M measurements!

e Key idea: Reed-Muller sequences in CV can be decoded with

log(N) = m measurements.
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Binary Chirps

Fix me N and S € Sym(m) binary symmetric.

Recall N =2™M. CN is indexed with FJ" (all vectors, complex or
binary, are column vectors).

Define a unitary matrix Ug e CMN*V as

1 .t t
Us(a, b) _ i Sa+2b"a mod 4.

VN

A binary chirp (BC) is a column Ug .

e There are 2™ .2m(m+1)/2 B(Cs,

e If S has zero diagonal then Usp, € RV,

e There are 2™ .2M(M-1)/2 rea3| BCs.

e BCs can be decoded with m + 1 measurements.
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Binary Subspace Chirps

Key idea: For 0 <r < m, embed all BCs in 2" dimensions to
N = 2™ dimensions and consider all of them jointly.

e For P ¢ GL(m), P~* denotes the inverse transpose.

e Define a unitary matrix Up s € CN*N a5

)

1 -1\bg(p- B
Ups(a,b) = ﬁi(P 12)'S(Pta)+2b! (Pla) mod 4 £ (py p-ly )

where .
f(x,y,r)= [T (1+x+y).

i=r+1
e A binary subspace chirp (BSSC) is a column Up s j,.
e Note: Not all choices of P, S give different BSSCs.
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Parametrization of BSSCs

Theorem
A rank r BSSC is characterized by H € G(m,r) and S, € Sym(r).

e Write H = cs (Hz) where Hz is in CREF and Z is the set of
pivots. Then put

P=Py=[Hs I].

e Note: Pt =[Iz Hz], where (Hz)'Hz = 0.
e Sym(r) is embedded in Sym(m) as the upper-left block.
e The total number of BSSCs is

om., Z 2r(r+1)/2(’:’) —om, H(2r 4 1).
r=0 2 r=1

o |BSSC|/|BC| - 2.384...
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Algebra and Geometry of BSSCs

e The m-qubit Heisenberg-Weyl group is
HWn = {i*D(x,y) | k=0,1,2,3,x,y e F{'} c U(N)

t
where D(x,y) : e, —> (-1)"Y ey.x.
Theorem

(1) There are JT21(2" + 1) maximal abelian subgroups if HWWpy.

(2) Ups,, is the common eigenbase of a unique maximal abelian
subgroup of HW)y.

(3) Up s, belongs to the normalizer of Wy in U(N), that is,
Clifford group Cliffy.

Theorem

Let w be a rank r BSSCs with on-off pattern determined by
H =cs(Hz). Then |wiD(0,y)w| = 0 iff y'"Hz = 0.



BSSC vs Noisy BSSC
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Error probability of single transmission
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Multi BSSCs (no noise)

Figure 1: Combination of a rank 2, rank 3, and rank 6 BSSCs in
N = 256.



Error probability of multiple transmissions
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