Symplectic Isometries of Quantum Stabilizer Codes

Tefjol Pllaha

Department of Mathematics University of Kentucky http://www.ms.uky.edu/~tpl222

30th Cumberland Conference on Combinatorics, Graph Theory, and Computing

Department of Mathematics University of Kentucky

イロト イポト イヨト イヨト

э

Disclaimer(s)

Department of Mathematics University of Kentucky

<ロ> <同> <同> < 回> < 回>

2

Results hold in a more general setting.

Department of Mathematics University of Kentucky

Image: Image:

3

- Results hold in a more general setting.
- Motivation and connection with quantum computation will be bypassed.

< ∃ >

- Results hold in a more general setting.
- Motivation and connection with quantum computation will be bypassed.
- The main theorem has connections with the LU-LC conjecture.

Fix a finite field with $q = p^{\ell}$ elements, \mathbb{F}_q , and $n \in \mathbb{N}$.

Department of Mathematics University of Kentucky

 3 N 3

Fix a finite field with q = p^ℓ elements, F_q, and n ∈ N.
The map ⟨· | ·⟩_s : F²ⁿ_q × F²ⁿ_q → F_q defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \cdot a' - b' \cdot a,$$

(人間) システン イラン

3

Fix a finite field with q = p^ℓ elements, F_q, and n ∈ N.
The map ⟨· | ·⟩_s : F²ⁿ_q × F²ⁿ_q → F_q defined as

$$\langle (a,b) \mid (a',b')
angle_{\mathsf{s}} := b \cdot a' - b' \cdot a,$$

is a non-degenerate, symplectic, bilinear form.

Fix a finite field with q = p^ℓ elements, F_q, and n ∈ N.
The map ⟨· | ·⟩_s : F²ⁿ_q × F²ⁿ_q → F_q defined as

$$\langle (a,b) \mid (a',b') \rangle_{\mathsf{s}} := b \cdot a' - b' \cdot a,$$

is a non-degenerate, symplectic, bilinear form. For $A \subseteq \mathbb{F}_q^{2n}$, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_s = 0\}.$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Fix a finite field with q = p^ℓ elements, F_q, and n ∈ N.
The map (· | ·)_s : F²ⁿ_q × F²ⁿ_q → F_q defined as

$$\langle (a,b) \mid (a',b') \rangle_{\mathsf{s}} := b \cdot a' - b' \cdot a,$$

is a non-degenerate, symplectic, bilinear form. For $A \subseteq \mathbb{F}_q^{2n}$, $A^{\perp} := \{x \in R^{2n} \mid \langle x \mid A \rangle_s = 0\}.$

 tr : F_q → F_p will denote the trace over the prime field, and ω = e^{2πi/p} will be a fixed pth primitive root of unity.

A (very short) word on quantum errors

Department of Mathematics University of Kentucky

э

• Let $\mathcal{B} = \{v_x \mid x \in \mathbb{F}_q\}$ be an orthonormal basis of \mathbb{C}^q .

Department of Mathematics University of Kentucky

< 回 > < 回 > < 回 > < 回 > < 回

Department of Mathematics University of Kentucky

向下 イヨト イヨト

 $X(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto v_{x+a}.$

Department of Mathematics University of Kentucky

$$X(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto v_{x+a}.$$

X(a) is called a **flip error**.

白 ト イヨト イヨト

$$X(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto v_{x+a}.$$

X(a) is called a **flip error**.

$$Z(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto \omega^{\operatorname{tr}(ax)} v_x,$$

Department of Mathematics University of Kentucky

向下 イヨト イヨト

$$X(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto v_{x+a}.$$

X(a) is called a **flip error**.

$$Z(a): \mathbb{C}^q \longrightarrow \mathbb{C}^q: v_x \longmapsto \omega^{\operatorname{tr}(ax)} v_x,$$

Z(a) is called a **phase error**.

Department of Mathematics University of Kentucky

(Quantum) Stabilizer Codes

Definition

A \mathbb{F}_q -subspace $C \subseteq \mathbb{F}_q^{2n}$ such that $C \subseteq C^{\perp}$ is called a **stabilizer** code.

Department of Mathematics University of Kentucky

3

(Quantum) Stabilizer Codes

Definition

A \mathbb{F}_q -subspace $C \subseteq \mathbb{F}_q^{2n}$ such that $C \subseteq C^{\perp}$ is called a **stabilizer** code.

• The symplectic weight of a vector $(a, b) \in \mathbb{F}_q^{2n}$ is

$$wt_s(a, b) := \#\{i \mid (a_i, b_i) \neq (0, 0)\}.$$

Department of Mathematics University of Kentucky

3

(Quantum) Stabilizer Codes

Definition

A \mathbb{F}_q -subspace $C \subseteq \mathbb{F}_q^{2n}$ such that $C \subseteq C^{\perp}$ is called a **stabilizer** code.

• The symplectic weight of a vector $(a, b) \in \mathbb{F}_q^{2n}$ is

$$wt_s(a, b) := \#\{i \mid (a_i, b_i) \neq (0, 0)\}.$$

The minimum distance of a stabilizer code is

$$\mathsf{dist}(C) := \begin{cases} \min\{\mathsf{wt}_{\mathsf{s}}(a,b) \mid (a,b) \in C^{\perp} - C\} & \text{ if } C \subsetneq C^{\perp} \\ \min\{\mathsf{wt}_{\mathsf{s}}(a,b) \mid (a,b) \in C^{\perp} - \{0\}\} & \text{ if } C = C^{\perp} \end{cases}$$

Symplectic Isometries

Department of Mathematics University of Kentucky

● ▶ ▲ ミ ▶

글 🕨 🛛 글

Let $A \subseteq \mathbb{F}_q^{2n}$ be a subspace. A linear map $f : A \to \mathbb{F}_q^{2n}$ is called a **symplectic isometry** if for all $x, y \in \mathbb{F}_q^{2n}$

 $\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$

Department of Mathematics University of Kentucky

- (同) (目) (目) - 日

Let $A \subseteq \mathbb{F}_q^{2n}$ be a subspace. A linear map $f : A \to \mathbb{F}_q^{2n}$ is called a **symplectic isometry** if for all $x, y \in \mathbb{F}_q^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$.

Department of Mathematics University of Kentucky

回 と くき とくき とう

Let $A \subseteq \mathbb{F}_q^{2n}$ be a subspace. A linear map $f : A \to \mathbb{F}_q^{2n}$ is called a **symplectic isometry** if for all $x, y \in \mathbb{F}_q^{2n}$

$$\mathsf{wt}_{\mathsf{s}}(x) = \mathsf{wt}_{\mathsf{s}}(f(x)) \text{ and } \langle x \mid y \rangle_{\mathsf{s}} = \langle f(x) \mid f(y) \rangle_{\mathsf{s}}.$$

Example

1 For a permutation $\sigma \in S_n$, $(a, b) \mapsto (\sigma(a), \sigma(b))$. **2** $(a, b) \mapsto (\cdots, a_{i-1}, b_i, a_{i+1}, \cdots, \cdots, b_{i-1}, -a_i, b_{i+1}, \cdots)$.

Department of Mathematics University of Kentucky

★@> ★ E> ★ E> = E

Department of Mathematics University of Kentucky

1≣ ≯

⊡ ► <

≣⇒

3

Question

What is the structure of symplectic isometries of \mathbb{F}_q^{2n} ?

Department of Mathematics University of Kentucky

・ロト ・回ト ・ヨト ・ヨト

2

Question

What is the structure of symplectic isometries of \mathbb{F}_q^{2n} ?

 To answer this question we transfer the problem on (F²_q)ⁿ via the change of coordinates

$$\gamma: \mathbb{F}_q^{2n} \to (\mathbb{F}_q^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

Department of Mathematics University of Kentucky

(人間) システン イラン

Question

What is the structure of symplectic isometries of \mathbb{F}_q^{2n} ?

 To answer this question we transfer the problem on (F²_q)ⁿ via the change of coordinates

$$\gamma: \mathbb{F}_q^{2n} \to (\mathbb{F}_q^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

■ The symplectic weight now becomes the Hamming weight on F²_q, that is, wt_H(x) = wt_s(γ⁻¹(x)) for all x ∈ (F²_q)ⁿ.

▲ 御 ▶ → 注 ▶ → 注 ▶ →

Question

What is the structure of symplectic isometries of \mathbb{F}_q^{2n} ?

 To answer this question we transfer the problem on (F²_q)ⁿ via the change of coordinates

$$\gamma: \mathbb{F}_q^{2n} \to (\mathbb{F}_q^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on 𝔽²_q, that is, wt_H(x) = wt_s(γ⁻¹(x)) for all x ∈ (𝔽²_q)ⁿ.

• Define $\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$ for all $x, y \in (\mathbb{F}_q^2)^n$.

▲□→ ▲注→ ▲注→

Question

What is the structure of symplectic isometries of \mathbb{F}_q^{2n} ?

 To answer this question we transfer the problem on (F²_q)ⁿ via the change of coordinates

$$\gamma: \mathbb{F}_q^{2n} \to (\mathbb{F}_q^2)^n, (a, b) \mapsto (a_1, b_1 \mid \cdots \mid a_n, b_n).$$

The symplectic weight now becomes the Hamming weight on 𝔽²_q, that is, wt_H(x) = wt_s(γ⁻¹(x)) for all x ∈ (𝔽²_q)ⁿ.

• Define
$$\langle x \mid y \rangle := \langle \gamma^{-1}(x) \mid \gamma^{-1}(y) \rangle_s$$
 for all $x, y \in (\mathbb{F}_q^2)^n$.

• For a linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$, denote $\widetilde{f} := \gamma \circ f \circ \gamma^{-1}$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

Department of Mathematics University of Kentucky

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)$$

for $A_i \in SL_2(\mathbb{F}_q)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

$$\widetilde{f}={\it diag}(A_1,\cdots,A_n)(P\otimes I_2),$$

for $A_i \in SL_2(\mathbb{F}_q)$.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

$$\widetilde{f}={\it diag}({\it A}_1,\cdots,{\it A}_n)({\it P}\otimes{\it I}_2),$$

for $A_i \in SL_2(\mathbb{F}_q)$.

• We call such symplectic isometries monomial isometries.

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(\mathbb{F}_q)$.

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq \mathbb{F}_{q}^{2n} \to \mathbb{F}_{q}^{2n}$?

Department of Mathematics University of Kentucky

★@> ★ E> ★ E> = E

Theorem (Gluesing-Luerssen/P, 2017)

A linear map $f : \mathbb{F}_q^{2n} \to \mathbb{F}_q^{2n}$ is a symplectic isometry iff the map $\widetilde{f} : (\mathbb{F}_q^2)^n \to (\mathbb{F}_q^2)^n$ is given by

$$\widetilde{f} = diag(A_1, \cdots, A_n)(P \otimes I_2),$$

for $A_i \in SL_2(\mathbb{F}_q)$.

We call such symplectic isometries monomial isometries.

Question

What is the structure of symplectic isometries $f : A \subsetneq \mathbb{F}_{q}^{2n} \to \mathbb{F}_{q}^{2n}$?

• We are interested on stabilizer codes.

Department of Mathematics University of Kentucky

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

Department of Mathematics University of Kentucky

3

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$

Department of Mathematics University of Kentucky

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

Department of Mathematics University of Kentucky

- (同) (目) (目) (目)

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

• $Mon_{SL}(C) \subseteq Symp(C)$.

Department of Mathematics University of Kentucky

(本語)》 (本語)》 (本語)》 (二語)

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

■
$$Mon_{SL}(C) \subseteq Symp(C)$$
.
■ Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

Department of Mathematics University of Kentucky

- (同) (目) (目) (目)

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

•
$$Mon_{SL}(C) \subseteq Symp(C)$$
.

Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

 Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

•
$$Mon_{SL}(C) \subseteq Symp(C)$$
.

Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

- Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
- Computing these groups is difficult in general. An easier question is the following.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Let $C \subseteq \mathbb{F}_q^{2n}$ be a stabilizer code. We define two groups:

 $Mon_{SL}(C) := \{ f \in Aut(C) \mid f \text{ is monomial isometry} \}$ Symp(C) := $\{ f \in Aut(C) \mid f \text{ is symplectic isometry} \}$

•
$$Mon_{SL}(C) \subseteq Symp(C)$$
.

Fact: $Mon_{SL}(C) \subsetneq Symp(C)$.

- Reason: Explicit construction of a stabilizer code that does not admit a monomial symplectic isometry.
- Computing these groups is difficult in general. An easier question is the following.

Open Problem

How different can the groups $Mon_{SL}(C)$ and Symp(C) be?

Department of Mathematics University of Kentucky

Theorem (P, 2018)

Let $H \leq G$ be two subgroups that satisfy some necessary conditions. Then there exists a stabilizer code C such that $H = Mon_{SL}(C)$ and G = Symp(C).

Department of Mathematics University of Kentucky

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Thank You!

Department of Mathematics University of Kentucky

・日本 ・ヨト・

3. 3