Un-Weyl-ing the Clifford Hierarchy

Tefjol Pllaha Joint with N. Rengaswamy, O. Tirkkonen, and R. Calderbank

Department of Communications and Networking Aalto University, Finland

Notation

- Heisenberg-Weyl group $\mathcal{HW}_N, N = 2^m$:
	- Pauli matrices: $D(a, b)$
	- Hermitian Pauli matrices: $E(a, b) = i^{ab}D(a, b)$
		- $E^2 = I_N$ and $E^{\dagger} = E$
	- Projective \mathcal{HW}_N : $\mathcal{PHW}_N = \mathcal{HW}_N / \{\pm I_N, \pm iI_N\} \cong \mathbb{F}_2^{2m}$.
- Clifford hierarchy $\{\mathcal{C}^{(k)}, k \geq 1\}$:
	- First level $C^{(1)} = \mathcal{HW}_N$.
	- kth level $C^{(k)} = \{U \in \mathbb{U}(N) \mid U\mathcal{H}W_NU^{\dagger} \subset C^{(k-1)}\}.$
	- Clifford group: Cliff_N = $\mathcal{C}^{(2)}/\mathbb{U}(1)$.
		- Cliff_N/ $\mathcal{PHW}_{N} \cong \text{Sp}(2m; 2)$: **GE(c)G[†]** = ±**E(cF)**.
- **Goals:** (1) Better understand the hierarchy.
	- (2) Characterize $C^{(3)}$.

(3) (Motivational question) What Paulis commute with a given unitary U?

What is known?

U si called semi-Clifford if it maps (under conjugation) at least one maximal commutative subgroup (MCS) of \mathcal{HW}_N to another MCS.

- \bullet $\mathcal{C}^{(k)}$ is made of semi-Cliffords for $\{m=1,2,\forall k\}$ and $m=k=3$
- Zeng et al. (2008) $\mathcal{C}^{(3)}$ is made of semi-Cliffords for all m.
- Gottesman and Mochon (2009) disprove the conjecture.

U si called **generalized** semi-Clifford if it maps the span of at least one MCS of \mathcal{HW}_N to the span of another MCS.

 \bullet Beigi and Shor (2010) prove that $\mathcal{C}^{(3)}$ is made of generalized semi-Cliffords for all m.

Cui et al., (2017); Rengaswamy et al. (2019) characterize the diagonal hierarchy $\mathcal{C}_d^{(k)}$ $\frac{(\kappa)}{d}$.

• $\mathcal{E}_N = \{ \mathsf{E}(\mathbf{c}) \mid \mathsf{c} \in \mathbb{F}_2^{2m} \}$ is an orthonormal with respect to

$$
\langle \mathbf{M} | \mathbf{N} \rangle \coloneqq \frac{1}{N} \text{Tr}(\mathbf{M}^{\dagger} \mathbf{N}). \tag{1}
$$

• Any unitary $U \in M_N(\mathbb{C})$ is a linear combination

$$
\mathbf{U} = \sum_{\mathbf{c} \in \mathbb{F}_2^{2m}} \alpha_{\mathbf{c}} \mathbf{E}(\mathbf{c}), \quad \alpha_{\mathbf{c}} = \langle \mathbf{E}(\mathbf{c}) | \mathbf{U} \rangle \in \mathbb{C}. \tag{2}
$$

Definition

$$
\mathrm{supp}(\bm{U})\coloneqq \left\{\bm{\mathsf{E}}(\bm{c})\in \mathcal{HW}_N\mid \alpha_{\bm{c}}\neq 0\right\}\cong \left\{\bm{c}\in \mathbb{F}_2^{2m}\mid \alpha_{\bm{c}}\neq 0\right\}
$$

Recall: $\text{Cliff}_N / \mathcal{PHW}_N \cong \text{Sp}(2m; 2)$: $\text{GE}(c) \text{G}^\dagger = \pm \text{E}(c\text{F})$

$$
F_D(P) = \begin{bmatrix} P & 0_m \\ 0_m & P^{-t} \end{bmatrix} \iff G_D(P) := |v\rangle \longmapsto |vP\rangle
$$

\n
$$
F_U(S) = \begin{bmatrix} I_m & S \\ 0_m & I_m \end{bmatrix} \iff G_U(S) := \text{diag}\left(i^{\text{vSv}^t \mod 4}\right)_{v \in \mathbb{F}_2^m}
$$

\n
$$
F_{\Omega}(r) = \begin{bmatrix} I_{m| - r} & I_{m| r} \\ I_{m| r} & I_{m| - r} \end{bmatrix} \iff G_{\Omega}(r) := (H_2)^{\otimes r} \otimes I_{2^{m-r}}
$$

Support of (elementary) Clifford matrices: a detour (II)

• For any binary ((typically) invertible) matrix **F** put

$$
\text{Fix}(\mathbf{F}) \coloneqq \{ \mathbf{v} \in \mathbb{F}_2^{2m} \mid \mathbf{v} = \mathbf{v} \mathbf{F} \},
$$

$$
\text{Res}(\mathbf{F}) \coloneqq \{ \mathbf{v} \oplus \mathbf{v} \mathbf{F} \mid \mathbf{v} \in \mathbb{F}_2^{2m} \}.
$$

- $F \in Sp(2m; 2)$ is called a **transvection** if dim $Res(F) = 1$.
- **F** is a transvection iff there exists (a unique) $\mathbf{v} \in \mathbb{F}_2^{2m}$ such that

 $xF = x \oplus (v|x)_{s}v$ for all x,

iff $\mathbf{F} = \mathbf{I}_{2m} \oplus \Omega \mathbf{v}^{\mathrm{t}} \mathbf{v} =: \mathbf{T}_{\mathbf{v}}.$

$$
\mathbf{T}_{\mathbf{v}} \in \mathrm{Sp}(2m; 2) \quad \longleftrightarrow \quad \mathbf{G}_{\mathbf{v}} := \frac{\mathbf{I}_{N} \pm i \mathbf{E}(\mathbf{v})}{\sqrt{2}} \in \mathrm{Cliff}_N
$$

Support of (elementary) Clifford matrices: a detour (III)

Theorem (Callan, 78).

 $\mathbf{F} \in \text{Sp}(2m; 2)$ is a product of r or $r + 1$ transvections, where $r = \dim$ Res(**F**).

Corollary

(1) Any Clifford matrix $G \in \text{Cliff}_N$ can be written as

$$
\mathbf{G} = \mathbf{E}_0 \prod_{n=1}^k \frac{\mathbf{I}_N + i \mathbf{E}_n}{\sqrt{2}} = \frac{\mathbf{E}_0}{\sqrt{|S|}} \sum_{\mathbf{E} \in S} \alpha_{\mathbf{E}} \mathbf{E},
$$

where $S = \langle \mathbf{E}_1, \ldots, \mathbf{E}_k \rangle$ and $\alpha_{\mathbf{F}} \in \mathbb{C}$.

(2) Any Clifford matrix **G** is supported either on a group S or on a coset E_0S depending on whether G has trace or not.

Support of (elementary) Clifford matrices

Proposition

The support of standard Clifford matrices satisfies the following:

 $(1) \operatorname{supp}(\mathbf{G}_D(\mathbf{P})) = \operatorname{Res}(\mathbf{P}^{-1}) \times \operatorname{Fix}(\mathbf{P})^{\perp} = \operatorname{Res}(\mathbf{P}^{-1}) \times \operatorname{Res}(\mathbf{P}).$ (2) Let $S \in \text{Sym}(m)$ and $W = \text{ker}(S) = \{w \in \mathbb{F}_2^m \mid wS = 0\}$. If $\text{Tr}(\mathsf{G}_U(\mathsf{S}))$ ≠ 0 then $\text{supp}(\mathsf{G}_U(\mathsf{S}))$ = $\{\mathbf{0}\}\times\mathsf{W}^\perp$. Otherwise $\operatorname{\mathsf{G}}_U(\operatorname{\mathsf{S}})$ is supported on a coset of $\{\boldsymbol{0}\}\times W^\perp$. As a consequence, the support of diagonal Cliffords is completely characterized by the row/column space of the associated symmetric S. (3) Let $D_r = \{ (\mathbf{x}, \mathbf{0}_{m-r}, \mathbf{x}, \mathbf{0}_{m-r}) \mid \mathbf{x} \in \mathbb{F}_2^r \} \subset \mathbb{F}_2^{2m}$. Then $\mathrm{supp}(\mathsf{G}_{\Omega}(r))$ = $(\mathbf{1}_{r},\mathbf{0}_{2m-r})$ ⊕ $D_{r},$ where $\mathbf{1}_{r}$ denotes the all ones vector of size r. As a consequence, partial Hadamard matrices $\mathbf{G}_{\Omega}(r)$ are supported on a coset of $\text{Res}(\mathbf{F}_{\Omega}(r))$.

Example: The CNOT gate

• The CNOT gate is of form $G_D(P)$, to which corresponds $\mathbf{F}_{\text{CNOT}} = \mathbf{F}_{D}(\mathbf{P})$, where

$$
\mathsf{P} = \mathsf{P}^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
$$

- dim $\text{Res}(\mathbf{F}_{\text{CNOT}}) = 2$ and $\mathbf{F}_{\text{CNOT}} = \mathbf{T}_{0010} \mathbf{T}_{0100} \mathbf{T}_{0110}$.
	- Reason for the additional transvection: $\langle v | v \mathbf{F}_{\text{CNOT}} \rangle_s = 0$ for all **v**, that is, \mathbf{F}_{CNOT} is **hyperbolic**.
- Put $E_1 = E(00, 10)$, $E_2 = E(01, 00)$. Then

$$
CNOT = \frac{1 - i}{\sqrt{2}} \cdot \frac{(\mathbf{I} + i\mathbf{E}_1)(\mathbf{I} + i\mathbf{E}_2)(\mathbf{I} - i\mathbf{E}_1\mathbf{E}_2)}{\sqrt{8}}
$$

$$
= \frac{1}{2}(\mathbf{I} + \mathbf{E}_1 + \mathbf{E}_2 - \mathbf{E}_1\mathbf{E}_2),
$$

• Consider the action of $C \in C^{(3)}$ on Hermitian Paulis:

$$
\varphi_{\textbf{C}}: \left\{ \begin{array}{ccc} \mathcal{PHW}_{N} & \stackrel{\phi_{\textbf{C}}}{\longrightarrow} & \mathrm{Cliff}_{N} & \stackrel{\Phi}{\longrightarrow} & \mathrm{Sp}(2m;2) \\ \textbf{E} & \longmapsto & \textbf{CEC}^{\dagger} & \longmapsto & \Phi(\textbf{CEC}^{\dagger}) \end{array} \right.
$$

 \bullet CEC[†] is traceless, Hermitian, and involution.

Hermitian Clifford matrices

Theorem

Let $\mathbf{E}_n = \mathbf{E}(\mathbf{c}_n)$, $n = 1, \ldots, k$, be a set of k **independent** Hermitian Pauli matrices. Let also $E_0 = E(c_0)$ be a Hermitian Pauli matrix. Then:

(1) the Clifford matrix

$$
\mathbf{G} = \mathbf{E}_0 \prod_{n=1}^k \frac{1}{\sqrt{2}} (\mathbf{I} + i \mathbf{E}_n)
$$

is Hermitian iff E_0 anticommutes with all E_n and all E_n commute with each other.

(2) There exist a quadratic form Q and linear form L such that

$$
\mathbf{G} = \frac{1}{\sqrt{2^k}} \sum_{\mathbf{d} \in \mathbb{F}_2^k} i^{Q(\mathbf{d})} \mathbf{E}(L(\mathbf{d})).
$$

Semi-Clifford matrices

- A semi-Clifford C maps a maximal commutative subgroup (MSC) S_1 to some other MSC $S_2 = \mathbf{C} S_1 \mathbf{C}^{\dagger}$.
	- After a **Clifford correction** we may assume that **C** fixes some MSC.
	- After an **additional** Clifford correction we may assume that C fixes **any** MSC.
	- After an **additional** Clifford correction we may assume that **C** fixes any MSC pointwise.

Theorem (Characterization of semi-Cliffords).

Let C be a unitary matrix and S be a MCS. If C fixes S pointwise then supp $(C) \subset S$. The converse is also true. This property characterizes semi-Clifford matrices up to multiplication by Clifford.

Theorem (Structure of semi-Cliffords).

Let $\textsf{C}\in \mathcal{C}^{(k)}$ be a unitary matrix that fixes the group of diagonal Paulis $Z_N = \mathbf{E}(\mathbf{0}_m, \mathbf{I}_m)$. Then $\mathbf{C} = \mathbf{DE}(\mathbf{a}, \mathbf{0}) \mathbf{G}_D(\mathbf{P})$, for some diagonal $\mathbf{D} \in \mathcal{C}_d^{(k)}$ $\mathcal{L}_{d}^{(k)}$, $\mathbf{P} \in \mathrm{GL}(m)$, and $\mathbf{a} \in \mathbb{F}_{2}^{m}$.

Proof (Sketch).

- C = D Π , D $\in C_d^{(k)}$ $\int_{d}^{(\kappa)}$, Π permutation.
- Diagonals of Z_N are 2nd order Reed-Muller codewords.
- The automorphism group of 2nd order Reed-Muller code is the **general affine** group of maps

$$
\mathbf{v} \longmapsto \mathbf{v} \mathbf{P} \oplus \mathbf{a}, \quad \mathbf{P} \in \mathrm{GL}(m), \mathbf{a} \in \mathbb{F}_2^m.
$$

The third level $C^{(3)}$

Lemma

•

For $C \in \mathcal{C}^{(3)}$ there exists a Pauli \widetilde{E} such that $C\widetilde{E}C^{\dagger}$ is also a Pauli. As a consequence, there exists a Clifford correction G such that GC fixes (i.e., commutes with) some Pauli matrix.

Proof (Sketch).

$$
\varphi_{\mathbf{C}} : \left\{ \begin{array}{ccc} \mathcal{PHW}_N & \xrightarrow{\phi_{\mathbf{C}}} & \mathrm{Cliff}_N & \xrightarrow{\Phi} & \mathrm{Sp}(2m;2) \\ \mathbf{E} & \longmapsto & \mathbf{CEC}^{\dagger} & \longmapsto & \Phi(\mathbf{CEC}^{\dagger}) \end{array} \right.
$$

- ker $\varphi_C \subset \mathcal{PHW}_N$ has size 2^k for some $k \geq 0$.
- $G \coloneqq \mathrm{im}\, \varphi_{\mathbf{C}} \subset \mathrm{Sp}(2m; 2),$ of size 2^{2m-k} , acts on $\mathbb{F}_2^{2m} \smallsetminus \{\mathbf{0}\}.$
- There exists an orbit of size 1.
	- Translation: There exists \widetilde{E} that either commutes or anticommutes with all CEC[†].
- Conclude the proof by considering the action of \widetilde{E} on C.

The third level $C^{(3)}$

Theorem (Support of third level Cliffords).

Let $\boldsymbol{\mathsf{C}}$ be a unitary matrix from $\mathcal{C}^{(3)}$. Then there exists a Clifford G such that GC is supported on a maximal commutative subgroup of \mathcal{HW}_N .

Proof (Sketch).

- Induct on the number of qubits.
- There exists some Clifford H such that HC commutes with some $\mathsf{E} \in \mathcal{HW}_N$.
- Consider $S = \langle E \rangle$, its normalizer $S^{\perp_{\mathcal{S}}}$, and the resulting $[m, m - 1]$ stabilizer code.
- Apply induction to the logical (m-1)-qubit operation realized by HC.

Corollary (The generalized semi-Clifford Conjecture). Every $C \in C^{(3)}$ is a generalized semi-Clifford matrix.

Consider a generic sum of Paulis

$$
\mathbf{C} = \sum_{\mathbf{E} \in S} \alpha_{\mathbf{E}} \mathbf{E}.
$$

Open Problem

- Characterize $\{\alpha_{\mathbf{E}}\}$ for $\mathbf{C} \in \mathcal{C}^{(k)}$.
- What if, additionally, S is MCS?

Conjecture

If S is MCS and $\textbf{C} \in \mathcal{C}^{(k)}$ then $\{\alpha_{\mathsf{E}}\}$ are \textbf{d} etermined by the k th order Reed-Muller code.

Future Research (II)

- Recall: Hermitian Paulis satisfy $E^2 = I_N$ and $E^{\dagger} = E$.
- Transvections are **square roots** of Hermitian Paulis, and they generate $Cliff_{N}$.
- Let **U** be a generic unitary such that $U^2 = I_N$ and $U^{\dagger} = U$.
	- Use a generic annually sacre root I_N .

Open Problem

Does there exist a set $\mathcal{U} = \{ \mathbf{U} \in \mathbb{U}(N) \mid \mathbf{U}^2 = \mathbf{I}_N \text{ and } \mathbf{U}^\dagger = \mathbf{U} \}$ such that the set of square roots

$$
Sqrt(\mathcal{U}) = \{(\mathbf{I}_N + i\mathbf{U})/\sqrt{2} \mid \mathbf{U} \in \mathcal{U}\}
$$

generates $C^{(3)}$?

Conjecture

Let $\mathcal{G} = \{ \mathbf{G} \in \mathrm{Cliff}_N \mid \mathbf{G}^2 \in \mathcal{HW}_N \text{ and } \mathbf{G}^\dagger = \mathbf{G} \}.$ Then $\mathrm{Sqrt}(\mathcal{G})$ generates $C^{(3)}$.

THANK YOU!