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Notation

• Heisenberg-Weyl group HWN ,N = 2m:

• Pauli matrices: D(a,b)

• Hermitian Pauli matrices: E(a,b) = iab
t
D(a,b)

• E2
= IN and E†

= E

• Projective HWN : PHWN =HWN/{±IN ,±iIN} ≅ F2m
2 .

• Clifford hierarchy {C(k), k ≥ 1}:

• First level C(1) =HWN .

• kth level C(k) = {U ∈ U(N) ∣ UHWNU† ⊂ C(k−1)}.

• Clifford group: CliffN = C(2)/U(1).

• CliffN/PHWN ≅ Sp(2m; 2): GE(c)G†
= ±E(cF).

Goals: (1) Better understand the hierarchy.

(2) Characterize C(3).

(3) (Motivational question) What Paulis commute with a

given unitary U?
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What is known?

U si called semi-Clifford if it maps (under conjugation) at least

one maximal commutative subgroup (MCS) of HWN to another

MCS.

• C(k) is made of semi-Cliffords for {m = 1,2,∀k} and m = k = 3

• Zeng et al. (2008) C(3) is made of semi-Cliffords for all m.

• Gottesman and Mochon (2009) disprove the conjecture.

U si called generalized semi-Clifford if it maps the span of at

least one MCS of HWN to the span of another MCS.

• Beigi and Shor (2010) prove that C(3) is made of generalized

semi-Cliffords for all m.

Cui et al., (2017); Rengaswamy et al. (2019) characterize the

diagonal hierarchy C
(k)
d .
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Main tool: the support of a unitary

• EN = {E(c) ∣ c ∈ F2m
2 } is an orthonormal with respect to

⟨M ∣N ⟩ ∶=
1

N
Tr(M†N). (1)

• Any unitary U ∈MN(C) is a linear combination

U = ∑
c∈F2m

2

αcE(c), αc = ⟨E(c) ∣U ⟩ ∈ C. (2)

Definition

supp(U) ∶= {E(c) ∈HWN ∣ αc ≠ 0} ≅ {c ∈ F2m
2 ∣ αc ≠ 0}
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Support of (elementary) Clifford matrices: a detour (I)

Recall: CliffN/PHWN ≅ Sp(2m; 2): GE(c)G† = ±E(cF)

FD(P) =
⎡
⎢
⎢
⎢
⎣

P 0m

0m P−t

⎤
⎥
⎥
⎥
⎦
←→ GD(P) ∶= ∣v⟩z→ ∣vP⟩

FU(S) =
⎡
⎢
⎢
⎢
⎣

Im S

0m Im

⎤
⎥
⎥
⎥
⎦
←→ GU(S) ∶= diag(ivSv

t
mod 4)

v∈Fm
2

FΩ(r) =
⎡
⎢
⎢
⎢
⎣

Im∣−r Im∣r
Im∣r Im∣−r

⎤
⎥
⎥
⎥
⎦
←→ GΩ(r) ∶= (H2)

⊗r ⊗ I2m−r
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Support of (elementary) Clifford matrices: a detour (II)

• For any binary ((typically) invertible) matrix F put

Fix(F) ∶= {v ∈ F2m
2 ∣ v = vF},

Res(F) ∶= {v ⊕ vF ∣ v ∈ F2m
2 }.

• F ∈ Sp(2m; 2) is called a transvection if dim Res(F) = 1.

• F is a transvection iff there exists (a unique) v ∈ F2m
2 such that

xF = x⊕ ⟨v ∣x ⟩sv for all x,

iff F = I2m ⊕Ωvtv =∶ Tv.

Tv ∈ Sp(2m; 2) ←→ Gv ∶=
IN±iE(v)√

2
∈ CliffN
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Support of (elementary) Clifford matrices: a detour (III)

Theorem (Callan, 78).

F ∈ Sp(2m; 2) is a product of r or r + 1 transvections, where

r = dim Res(F).

Corollary

(1) Any Clifford matrix G ∈ CliffN can be written as

G = E0

k

∏
n=1

IN + iEn
√

2
=

E0
√

∣S ∣
∑
E∈S

αEE,

where S = ⟨E1, . . . ,Ek⟩ and αE ∈ C.

(2) Any Clifford matrix G is supported either on a group S or on a

coset E0S depending on whether G has trace or not.
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Support of (elementary) Clifford matrices

Proposition

The support of standard Clifford matrices satisfies the following:

(1) supp(GD(P)) = Res(P−1) × Fix(P)⊥ = Res(P−1) ×Res(P).

(2) Let S ∈ Sym(m) and W = ker(S) = {w ∈ Fm
2 ∣ wS = 0}. If

Tr(GU(S)) ≠ 0 then supp(GU(S)) = {0} × W ⊥. Otherwise

GU(S) is supported on a coset of {0}×W ⊥. As a consequence,

the support of diagonal Cliffords is completely characterized by

the row/column space of the associated symmetric S.

(3) Let Dr = {(x,0m−r ,x,0m−r) ∣ x ∈ Fr
2} ⊂ F2m

2 . Then

supp(GΩ(r)) = (1r ,02m−r)⊕Dr , where 1r denotes the all ones

vector of size r . As a consequence, partial Hadamard matrices

GΩ(r) are supported on a coset of Res(FΩ(r)).
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Example: The CNOT gate

• The CNOT gate is of form GD(P), to which corresponds

FCNOT = FD(P), where

P = P−1
=
⎡
⎢
⎢
⎢
⎣

1 1

0 1

⎤
⎥
⎥
⎥
⎦
.

• dim Res(FCNOT) = 2 and FCNOT = T0010T0100T0110.

• Reason for the additional transvection: ⟨v ∣vFCNOT ⟩s = 0 for

all v, that is, FCNOT is hyperbolic.

• Put E1 = E(00,10),E2 = E(01,00). Then

CNOT =
1 − i
√

2
⋅
(I + iE1)(I + iE2)(I − iE1E2)

√
8

=
1

2
(I + E1 + E2 − E1E2),
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Hermitian Clifford matrices

• Consider the action of C ∈ C(3) on Hermitian Paulis:

ϕC ∶

⎧⎪⎪
⎨
⎪⎪⎩

PHWN
φC
Ð→ CliffN

Φ
Ð→ Sp(2m; 2)

E z→ CEC† z→ Φ(CEC†)

• CEC† is traceless, Hermitian, and involution.
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Hermitian Clifford matrices

Theorem

Let En = E(cn),n = 1, . . . , k, be a set of k independent

Hermitian Pauli matrices. Let also E0 = E(c0) be a Hermitian

Pauli matrix. Then:

(1) the Clifford matrix

G = E0

k

∏
n=1

1
√

2
(I + iEn)

is Hermitian iff E0 anticommutes with all En and all En commute

with each other.

(2) There exist a quadratic form Q and linear form L such that

G =
1

√
2k
∑

d∈Fk
2

iQ(d)E(L(d)).
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Semi-Clifford matrices

• A semi-Clifford C maps a maximal commutative subgroup
(MSC) S1 to some other MSC S2 = CS1C†.

• After a Clifford correction we may assume that C fixes some

MSC.

• After an additional Clifford correction we may assume that C

fixes any MSC.

• After an additional Clifford correction we may assume that C

fixes any MSC pointwise.

Theorem (Characterization of semi-Cliffords).

Let C be a unitary matrix and S be a MCS. If C fixes S

pointwise then supp(C) ⊂ S . The converse is also true. This

property characterizes semi-Clifford matrices up to multiplication

by Clifford.
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Semi-Clifford matrices

Theorem (Structure of semi-Cliffords).

Let C ∈ C(k) be a unitary matrix that fixes the group of diagonal

Paulis ZN = E(0m, Im). Then C = DE(a,0)GD(P), for some

diagonal D ∈ C
(k)
d ,P ∈ GL(m), and a ∈ Fm

2 .

Proof (Sketch).

• C = DΠ, D ∈ C
(k)
d , Π permutation.

• Diagonals of ZN are 2nd order Reed-Muller codewords.

• The automorphism group of 2nd order Reed-Muller code is

the general affine group of maps

v z→ vP⊕ a, P ∈ GL(m),a ∈ Fm
2 .
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The third level C(3)

Lemma

For C ∈ C(3) there exists a Pauli Ẽ such that CẼC† is also a

Pauli. As a consequence, there exists a Clifford correction G such

that GC fixes (i.e., commutes with) some Pauli matrix.

Proof (Sketch).

•

ϕC ∶

⎧⎪⎪
⎨
⎪⎪⎩

PHWN
φC
Ð→ CliffN

Φ
Ð→ Sp(2m; 2)

E z→ CEC† z→ Φ(CEC†)

• kerϕC ⊂ PHWN has size 2k for some k ≥ 0.

• G ∶= imϕC ⊂ Sp(2m; 2), of size 22m−k , acts on F2m
2 ∖ {0}.

• There exists an orbit of size 1.

• Translation: There exists Ẽ that either commutes or

anticommutes with all CEC†.

• Conclude the proof by considering the action of Ẽ on C.
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The third level C(3)

Theorem (Support of third level Cliffords).

Let C be a unitary matrix from C(3). Then there exists a Clifford

G such that GC is supported on a maximal commutative

subgroup of HWN .

Proof (Sketch).

• Induct on the number of qubits.

• There exists some Clifford H such that HC commutes with

some E ∈HWN .

• Consider S = ⟨E⟩, its normalizer S⊥s , and the resulting

[[m,m − 1]] stabilizer code.

• Apply induction to the logical (m-1)-qubit operation realized

by HC.
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The third level C(3)

Corollary (The generalized semi-Clifford Conjecture).

Every C ∈ C(3) is a generalized semi-Clifford matrix.
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Future Research (I)

Consider a generic sum of Paulis

C = ∑
E∈S

αEE.

Open Problem

• Characterize {αE} for C ∈ C(k).

• What if, additionally, S is MCS?

Conjecture

If S is MCS and C ∈ C(k) then {αE} are determined by the kth

order Reed-Muller code.
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Future Research (II)

• Recall: Hermitian Paulis satisfy E2 = IN and E† = E.

• Transvections are square roots of Hermitian Paulis, and they

generate CliffN .
• Let U be a generic unitary such that U2 = IN and U† = U.

• Its square root (IN + iU)/
√

2 is again unitary.

Open Problem

Does there exist a set U = {U ∈ U(N) ∣ U2 = IN and U† = U}

such that the set of square roots

Sqrt(U) = {(IN + iU)/
√

2 ∣ U ∈ U}

generates C(3)?

Conjecture

Let G = {G ∈ CliffN ∣ G2 ∈HWN and G† = G}. Then Sqrt(G)

generates C(3).
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