Un-Weyl-ing the Clifford Hierarchy

Tefjol Pllaha

Joint with N. Rengaswamy, O. Tirkkonen, and R. Calderbank

Department of Communications and Networking
Aalto University, Finland



Notation

e Heisenberg-Weyl group HWy, N =2™:
e Pauli matrices: D(a,b)
e Hermitian Pauli matrices: E(a,b) = iath(a,b)
e E’=lyand E'=E
e Projective HWy: PHWy = HWp/{zln, zily} = F3™.
e Clifford hierarchy {C(¥) k > 1}
o First level ™M) = HWy.
o kth level C%) = {U e U(N) | UKWyUT c DY
e Clifford group: Cliffy = C(®/U(1).
e Cliffy/PHWn = Sp(2m;2): GE(c)G' = +E(cF).

Goals: (1) Better understand the hierarchy.
(2) Characterize C®®.

(3) (Motivational question) What Paulis commute with a
given unitary U?



What is known?

U si called semi-Clifford if it maps (under conjugation) at least
one maximal commutative subgroup (MCS) of HW) to another
MCS.

e C%) is made of semi-Cliffords for {m=1,2,¥k} and m=k =3
e Zeng et al. (2008) C® is made of semi-Cliffords for all m.
e Gottesman and Mochon (2009) disprove the conjecture.

U si called generalized semi-Clifford if it maps the span of at
least one MCS of HW)y to the span of another MCS.

e Beigi and Shor (2010) prove that C®) is made of generalized
semi-Cliffords for all m.

Cui et al., (2017); Rengaswamy et al. (2019) characterize the
: . (k)
diagonal hierarchy C;"’.



Main tool: the support of a unitary

e &y ={E(c)|ceF3™} is an orthonormal with respect to
1
(M|N):= NTr(MTN). (1)
e Any unitary U € My(C) is a linear combination

U= > acE(c), ac=(E(c)|U)eC. (2)

celF3m
Definition

supp(U) = {E(c) e KWy | ac # 0} = {c e F3™ | ¢ # 0}



Support of (elementary) Clifford matrices: a detour (1)

Recall: Cliffy/PHWy = Sp(2m;2): GE(c)G! = +E(cF)
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Support of (elementary) Clifford matrices: a detour (II)

e For any binary ((typically) invertible) matrix F put

Fix(F) := {v e F5™ | v = vF},
Res(F) := {ve vF |veF3"}.

e F e Sp(2m;2) is called a transvection if dimRes(F) = 1.

e F is a transvection iff there exists (a unique) v € F3™ such that
xF=x®(v|x)sv for all x,
iff F=loy,®Quiv = T,.

Ty €Sp(2m;2) «— Gy:= % e Cliffy



Support of (elementary) Clifford matrices: a detour (IlI)

Theorem (Callan, 78).

F € Sp(2m;2) is a product of r or r + 1 transvections, where
r = dimRes(F).

Corollary

(1) Any Clifford matrix G € Cliffy can be written as

IN + IE
G-= Eo aEE
[ - 2,
where S = (E1,...,Ex) and ag € C.
(2) Any Clifford matrix G is supported either on a group S or on a
coset EgS depending on whether G has trace or not.




Support of (elementary) Clifford matrices

Proposition

The support of standard Clifford matrices satisfies the following:

(1) supp(Gp(P)) = Res(P1) x Fix(P)* = Res(P~1) x Res(P).

(2) Let S € Sym(m) and W = ker(S) = {w ¢ FJ" | wS = 0}. If
Tr(Gy(S)) # 0 then supp(Gy(S)) = {0} x W*. Otherwise
Gy(S) is supported on a coset of {0} x W*. As a consequence,
the support of diagonal Cliffords is completely characterized by
the row/column space of the associated symmetric S.

(3)Let D, = {(x,0m—r,%,0m) | x € F5} c F3™.  Then
supp(Gaq(r)) = (1,,02m-,) ® D,, where 1, denotes the all ones
vector of size r. As a consequence, partial Hadamard matrices
Gq(r) are supported on a coset of Res(Fq(r)).



Example: The CNOT gate

e The CNOT gate is of form Gp(P), to which corresponds
FCNOT = FD(P), where

popi-|l ]
01

e dimRes(Fonor) =2 and Foxor = Too1o Toz00 To110-
e Reason for the additional transvection: (v |vFonoT )s =0 for
all v, that is, Fonor is hyperbolic.

e Put E; = E(00,10), E; = E(01,00). Then

1-14 (l TP iEl)(l T iEg)(l = iE1E2)
V2 V8

1
= 5(' + E1 + E2 - E1E2),

CNOT =




Hermitian Clifford matrices

e Consider the action of C € C®®) on Hermitian Paulis:

c: PHWn e, Cliffy 2, Sp(2m;2)
E — CEC' — &(CEC)

e CEC! is traceless, Hermitian, and involution.
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Hermitian Clifford matrices

Theorem

Let E,=E(c,),n=1,...,k, be a set of k independent
Hermitian Pauli matrices. Let also Eg = E(cp) be a Hermitian
Pauli matrix. Then:

(1) the Clifford matrix

k
1
G=Eo[]—(1+iEn)
n=1

is Hermitian iff Eg anticommutes with all E,, and all E, commute
with each other.

(2) There exist a quadratic form Q and linear form L such that

1

G=—= Y iQDE(L(d)).
V7 &, (L(d))
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Semi-Clifford matrices

e A semi-Clifford C maps a maximal commutative subgroup
(MSC) S; to some other MSC S, = CS;CT.

e After a Clifford correction we may assume that C fixes some
MSC.

e After an additional Clifford correction we may assume that C
fixes any MSC.

e After an additional Clifford correction we may assume that C
fixes any MSC pointwise.

Theorem (Characterization of semi-Cliffords).

Let C be a unitary matrix and S be a MCS. If C fixes S
pointwise then supp(C) ¢ S. The converse is also true. This
property characterizes semi-Clifford matrices up to multiplication
by Clifford.
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Semi-Clifford matrices

Theorem (Structure of semi-Cliffords).

Let C € C(K) be a unitary matrix that fixes the group of diagonal
Paulis Zy = E(Op, 1). Then C = DE(a,0)Gp(P), for some
diagonal D € Cgk), P ¢ GL(m), and a € F7".

Proof (Sketch).

e C=DIl, D¢ C((f), 1 permutation.
e Diagonals of Zy are 2nd order Reed-Muller codewords.

e The automorphism group of 2nd order Reed-Muller code is
the general affine group of maps

vi—vP®a, PecGL(m),acky.
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The third level C3®)

Lemma

For C € C® there exists a Pauli E such that CEC! is also a
Pauli. As a consequence, there exists a Clifford correction G such
that GC fixes (i.e., commutes with) some Pauli matrix.

Proof (Sketch).
([ ]
e . ® )
oc : PHWN — Chﬁ}v — Sp(2m, 2)
E +— CECl — o(CEC)
ker oc € PHW)y has size 2% for some k > 0.
G := impc c Sp(2m; 2), of size 227K acts on F3™ \ {0}.

There exists an orbit of size 1.

o Translation: There exists E that either commutes or

anticommutes with all CEC?.

Conclude the proof by considering the action of E on C. "



The third level C®

Theorem (Support of third level Cliffords).

Let C be a unitary matrix from C®). Then there exists a Clifford
G such that GC is supported on a maximal commutative

subgroup of HWy.
Proof (Sketch).

e Induct on the number of qubits.

o There exists some Clifford H such that HC commutes with
some E € HWy.
o Consider S = (E), its normalizer S*=, and the resulting

[m, m — 1] stabilizer code.

o Apply induction to the logical (m-1)-qubit operation realized
by HC.

ii5)



The third level C(®

Corollary (The generalized semi-Clifford Conjecture).

Every C e C®® is a generalized semi-Clifford matrix.
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Future Research (1)

Consider a generic sum of Paulis

C-= Z aEE.
EeS

Open Problem

o Characterize {ag} for C e C(K),
e What if, additionally, S is MCS?

Conjecture

If Sis MCS and C € C(K) then {ag} are determined by the kth
order Reed-Muller code.
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Future Research (I1)

e Recall: Hermitian Paulis satisfy E2 = Iy and Ef = E.
e Transvections are square roots of Hermitian Paulis, and they

generate Cliffy.
e Let U be a generic unitary such that U2 = Iy and Ut = U.
e lts square root (Iy + iU)/\/2 is again unitary.

Open Problem

Does there exist a set U = {U ¢ U(N) | U? = Iy and UT = U}
such that the set of square roots

Sart(U) = {(Iy + iU)/V/2 | U e U}

generates C(3)?

Conjecture

Let G = {G € Cliffy | G?> e HW)y and G' = G}. Then Sqrt(G)
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generates C(3)
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