Un-Weyl-ing the Clifford Hierarchy

Tefjol Pllaha Joint with N. Rengaswamy, O. Tirkkonen, and R. Calderbank

Department of Communications and Networking Aalto University, Finland

Notation

- Heisenberg-Weyl group $\mathcal{HW}_N, N = 2^m$:
 - Pauli matrices: **D**(**a**, **b**)
 - Hermitian Pauli matrices: $\mathbf{E}(\mathbf{a}, \mathbf{b}) = i^{\mathbf{a}\mathbf{b}^{\mathsf{T}}}\mathbf{D}(\mathbf{a}, \mathbf{b})$
 - $\mathbf{E}^2 = \mathbf{I}_N$ and $\mathbf{E}^{\dagger} = \mathbf{E}$
 - Projective \mathcal{HW}_N : $\mathcal{PHW}_N = \mathcal{HW}_N / \{\pm \mathbf{I}_N, \pm i \mathbf{I}_N\} \cong \mathbb{F}_2^{2m}$.
- Clifford hierarchy $\{\mathcal{C}^{(k)}, k \ge 1\}$:
 - First level $C^{(1)} = \mathcal{H} \mathcal{W}_N$.
 - *k*th level $\mathcal{C}^{(k)} = \{ \mathbf{U} \in \mathbb{U}(N) \mid \mathbf{U}\mathcal{H}\mathcal{W}_N \mathbf{U}^{\dagger} \subset \mathcal{C}^{(k-1)} \}.$
 - Clifford group: $\operatorname{Cliff}_{N} = \mathcal{C}^{(2)}/\mathbb{U}(1)$.
 - $\operatorname{Cliff}_{N}/\mathcal{PHW}_{N} \cong \operatorname{Sp}(2m; 2)$: $\mathbf{GE}(\mathbf{c})\mathbf{G}^{\dagger} = \pm \mathbf{E}(\mathbf{cF})$.
- Goals: (1) Better understand the hierarchy.
 - (2) Characterize $C^{(3)}$.

(3) (Motivational question) What Paulis commute with a given unitary \mathbf{U} ?

What is known?

U si called **semi-Clifford** if it maps (**under conjugation**) at least one maximal commutative subgroup (MCS) of \mathcal{HW}_N to another MCS.

- $C^{(k)}$ is made of semi-Cliffords for $\{m = 1, 2, \forall k\}$ and m = k = 3
- Zeng et al. (2008) $C^{(3)}$ is made of semi-Cliffords for all *m*.
- Gottesman and Mochon (2009) disprove the conjecture.

U si called **generalized** semi-Clifford if it maps the **span** of at least one MCS of \mathcal{HW}_N to the span of another MCS.

• Beigi and Shor (2010) prove that $C^{(3)}$ is made of generalized semi-Cliffords for all *m*.

Cui et al., (2017); Rengaswamy et al. (2019) characterize the diagonal hierarchy $\mathcal{C}_d^{(k)}$.

• $\mathcal{E}_N = \{ \mathbf{E}(\mathbf{c}) \mid \mathbf{c} \in \mathbb{F}_2^{2m} \}$ is an orthonormal with respect to

$$\langle \mathbf{M} | \mathbf{N} \rangle \coloneqq \frac{1}{N} \operatorname{Tr}(\mathbf{M}^{\dagger} \mathbf{N}).$$
 (1)

• Any unitary $\mathbf{U} \in \mathcal{M}_N(\mathbb{C})$ is a linear combination

$$\mathbf{U} = \sum_{\mathbf{c} \in \mathbb{F}_2^{2m}} \alpha_{\mathbf{c}} \mathbf{E}(\mathbf{c}), \quad \alpha_{\mathbf{c}} = \langle \mathbf{E}(\mathbf{c}) | \mathbf{U} \rangle \in \mathbb{C}.$$
(2)

Definition

$$\operatorname{supp}(\mathbf{U}) \coloneqq \{\mathbf{E}(\mathbf{c}) \in \mathcal{HW}_{N} \mid \alpha_{\mathbf{c}} \neq \mathbf{0}\} \cong \{\mathbf{c} \in \mathbb{F}_{2}^{2m} \mid \alpha_{\mathbf{c}} \neq \mathbf{0}\}$$

Support of (elementary) Clifford matrices: a detour (I)

Recall: Cliff_N/ $\mathcal{PHW}_N \cong$ Sp(2*m*; 2): **GE**(**c**)**G**[†] = ±**E**(**cF**)

$$\begin{aligned} \mathbf{F}_{D}(\mathbf{P}) &= \begin{bmatrix} \mathbf{P} & \mathbf{0}_{m} \\ \mathbf{0}_{m} & \mathbf{P}^{-\mathrm{t}} \end{bmatrix} &\longleftrightarrow & \mathbf{G}_{D}(\mathbf{P}) \coloneqq |\mathbf{v}\rangle \longmapsto |\mathbf{v}\mathbf{P}\rangle \\ \mathbf{F}_{U}(\mathbf{S}) &= \begin{bmatrix} \mathbf{I}_{m} & \mathbf{S} \\ \mathbf{0}_{m} & \mathbf{I}_{m} \end{bmatrix} &\longleftrightarrow & \mathbf{G}_{U}(\mathbf{S}) \coloneqq \mathrm{diag}\left(i^{\mathbf{v}\mathbf{S}\mathbf{v}^{\mathrm{t}}} \mod 4\right)_{\mathbf{v}\in\mathbb{F}_{2}^{m}} \\ \mathbf{F}_{\Omega}(r) &= \begin{bmatrix} \mathbf{I}_{m\mid-r} & \mathbf{I}_{m\mid r} \\ \mathbf{I}_{m\mid r} & \mathbf{I}_{m\mid-r} \end{bmatrix} &\longleftrightarrow & \mathbf{G}_{\Omega}(r) \coloneqq (\mathbf{H}_{2})^{\otimes r} \otimes \mathbf{I}_{2^{m-r}} \end{aligned}$$

Support of (elementary) Clifford matrices: a detour (II)

• For any binary ((typically) invertible) matrix **F** put

$$Fix(\mathbf{F}) \coloneqq \{\mathbf{v} \in \mathbb{F}_2^{2m} \mid \mathbf{v} = \mathbf{v}\mathbf{F}\},\$$
$$Res(\mathbf{F}) \coloneqq \{\mathbf{v} \oplus \mathbf{v}\mathbf{F} \mid \mathbf{v} \in \mathbb{F}_2^{2m}\}.$$

- $\mathbf{F} \in \operatorname{Sp}(2m; 2)$ is called a transvection if dim $\operatorname{Res}(\mathbf{F}) = 1$.
- **F** is a transvection iff there exists (a unique) $\mathbf{v} \in \mathbb{F}_2^{2m}$ such that

 $\mathbf{x}\mathbf{F} = \mathbf{x} \oplus \langle \mathbf{v} | \mathbf{x} \rangle_{s} \mathbf{v}$ for all \mathbf{x} ,

iff $\mathbf{F} = \mathbf{I}_{2m} \oplus \Omega \mathbf{v}^{\mathrm{t}} \mathbf{v} =: \mathbf{T}_{\mathbf{v}}$.

$$\mathbf{T}_{\mathbf{v}} \in \operatorname{Sp}(2m; 2) \quad \longleftrightarrow \quad \mathbf{G}_{\mathbf{v}} \coloneqq \frac{\mathbf{I}_{N} \pm i \mathbf{E}(\mathbf{v})}{\sqrt{2}} \in \operatorname{Cliff}_{N}$$

Support of (elementary) Clifford matrices: a detour (III)

Theorem (Callan, 78).

 $\mathbf{F} \in \text{Sp}(2m; 2)$ is a product of r or r + 1 transvections, where $r = \dim \text{Res}(\mathbf{F})$.

Corollary

(1) Any Clifford matrix $\mathbf{G} \in \operatorname{Cliff}_N$ can be written as

$$\mathbf{G} = \mathbf{E}_0 \prod_{n=1}^k \frac{\mathbf{I}_N + i\mathbf{E}_n}{\sqrt{2}} = \frac{\mathbf{E}_0}{\sqrt{|S|}} \sum_{\mathbf{E} \in S} \alpha_{\mathbf{E}} \mathbf{E},$$

where $S = \langle \mathbf{E}_1, \ldots, \mathbf{E}_k \rangle$ and $\alpha_{\mathbf{E}} \in \mathbb{C}$.

(2) Any Clifford matrix G is supported either on a group S or on a coset E₀S depending on whether G has trace or not.

Support of (elementary) Clifford matrices

Proposition

The support of standard Clifford matrices satisfies the following:

(1) supp $(\mathbf{G}_{\mathcal{D}}(\mathbf{P})) = \operatorname{Res}(\mathbf{P}^{-1}) \times \operatorname{Fix}(\mathbf{P})^{\perp} = \operatorname{Res}(\mathbf{P}^{-1}) \times \operatorname{Res}(\mathbf{P}).$ (2) Let $\mathbf{S} \in \operatorname{Sym}(m)$ and $W = \ker(\mathbf{S}) = \{\mathbf{w} \in \mathbb{F}_2^m \mid \mathbf{wS} = \mathbf{0}\}$. If $\operatorname{Tr}(\mathbf{G}_{U}(\mathbf{S})) \neq 0$ then $\operatorname{supp}(\mathbf{G}_{U}(\mathbf{S})) = {\mathbf{0}} \times W^{\perp}$. Otherwise $\mathbf{G}_U(\mathbf{S})$ is supported on a coset of $\{\mathbf{0}\} \times W^{\perp}$. As a consequence, the support of diagonal Cliffords is completely characterized by the row/column space of the associated symmetric S. (3) Let $D_r = \{(\mathbf{x}, \mathbf{0}_{m-r}, \mathbf{x}, \mathbf{0}_{m-r}) \mid \mathbf{x} \in \mathbb{F}_2^r\} \subset \mathbb{F}_2^{2m}$. Then $\operatorname{supp}(\mathbf{G}_{\Omega}(r)) = (\mathbf{1}_r, \mathbf{0}_{2m-r}) \oplus D_r$, where $\mathbf{1}_r$ denotes the all ones vector of size r. As a consequence, partial Hadamard matrices $\mathbf{G}_{\Omega}(r)$ are supported on a coset of $\operatorname{Res}(\mathbf{F}_{\Omega}(r))$.

Example: The CNOT gate

• The CNOT gate is of form $G_D(P)$, to which corresponds $F_{\rm CNOT} = F_D(P)$, where

$$\mathbf{P} = \mathbf{P}^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- dim $\operatorname{Res}(F_{\mathrm{CNOT}})$ = 2 and F_{CNOT} = $T_{0010}T_{0100}T_{0110}$.
 - Reason for the additional transvection: $\langle v | v F_{\rm CNOT} \rangle_{\rm s} = 0$ for all v, that is, $F_{\rm CNOT}$ is hyperbolic.
- Put $\mathbf{E}_1 = \mathbf{E}(00, 10), \mathbf{E}_2 = \mathbf{E}(01, 00)$. Then

$$CNOT = \frac{1-i}{\sqrt{2}} \cdot \frac{(\mathbf{I}+i\mathbf{E}_1)(\mathbf{I}+i\mathbf{E}_2)(\mathbf{I}-i\mathbf{E}_1\mathbf{E}_2)}{\sqrt{8}}$$
$$= \frac{1}{2}(\mathbf{I}+\mathbf{E}_1+\mathbf{E}_2-\mathbf{E}_1\mathbf{E}_2),$$

• Consider the action of $\boldsymbol{C}\in\mathcal{C}^{(3)}$ on Hermitian Paulis:

$$\varphi_{\mathsf{C}} : \left\{ \begin{array}{ccc} \mathcal{PHW}_{\mathsf{N}} & \stackrel{\phi_{\mathsf{C}}}{\longrightarrow} & \operatorname{Cliff}_{\mathsf{N}} & \stackrel{\Phi}{\longrightarrow} & \operatorname{Sp}(2m;2) \\ \mathsf{E} & \longmapsto & \mathsf{CEC}^{\dagger} & \longmapsto & \Phi(\mathsf{CEC}^{\dagger}) \end{array} \right.$$

• $\ensuremath{\mathsf{CEC}}^{\dagger}$ is traceless, Hermitian, and involution.

Hermitian Clifford matrices

Theorem

Let $\mathbf{E}_n = \mathbf{E}(\mathbf{c}_n)$, n = 1, ..., k, be a set of k independent Hermitian Pauli matrices. Let also $\mathbf{E}_0 = \mathbf{E}(\mathbf{c}_0)$ be a Hermitian Pauli matrix. Then:

(1) the Clifford matrix

$$\mathbf{G} = \mathbf{E}_0 \prod_{n=1}^k \frac{1}{\sqrt{2}} (\mathbf{I} + i\mathbf{E}_n)$$

is Hermitian iff \mathbf{E}_0 anticommutes with all \mathbf{E}_n and all \mathbf{E}_n commute with each other.

(2) There exist a quadratic form Q and linear form L such that

$$\mathbf{G} = \frac{1}{\sqrt{2^k}} \sum_{\mathbf{d} \in \mathbb{F}_2^k} i^{Q(\mathbf{d})} \mathbf{E}(L(\mathbf{d})).$$

Semi-Clifford matrices

- A semi-Clifford C maps a maximal commutative subgroup (MSC) S₁ to some other MSC S₂ = CS₁C[†].
 - After a **Clifford correction** we may assume that **C** fixes some MSC.
 - After an additional Clifford correction we may assume that C fixes any MSC.
 - After an **additional** Clifford correction we may assume that **C** fixes **any** MSC **pointwise**.

Theorem (Characterization of semi-Cliffords).

Let **C** be a unitary matrix and *S* be a MCS. If **C** fixes *S* pointwise then $supp(\mathbf{C}) \subset S$. The converse is also true. This property characterizes semi-Clifford matrices up to multiplication by Clifford.

Theorem (Structure of semi-Cliffords).

Let $\mathbf{C} \in \mathcal{C}^{(k)}$ be a unitary matrix that fixes the group of diagonal Paulis $Z_N = \mathbf{E}(\mathbf{0}_m, \mathbf{I}_m)$. Then $\mathbf{C} = \mathbf{D}\mathbf{E}(\mathbf{a}, \mathbf{0})\mathbf{G}_D(\mathbf{P})$, for some diagonal $\mathbf{D} \in \mathcal{C}_d^{(k)}, \mathbf{P} \in \mathrm{GL}(m)$, and $\mathbf{a} \in \mathbb{F}_2^m$.

Proof (Sketch).

- $\mathbf{C} = \mathbf{D}\Pi$, $\mathbf{D} \in \mathcal{C}_d^{(k)}$, Π permutation.
- Diagonals of Z_N are 2nd order Reed-Muller codewords.
- The automorphism group of 2nd order Reed-Muller code is the general affine group of maps

$$\mathbf{v} \mapsto \mathbf{v} \mathbf{P} \oplus \mathbf{a}, \quad \mathbf{P} \in \mathrm{GL}(m), \mathbf{a} \in \mathbb{F}_2^m.$$

The third level $\mathcal{C}^{(3)}$

Lemma

•

For $\mathbf{C} \in \mathcal{C}^{(3)}$ there exists a Pauli $\widetilde{\mathbf{E}}$ such that $\mathbf{C}\widetilde{\mathbf{E}}\mathbf{C}^{\dagger}$ is also a Pauli. As a consequence, there exists a Clifford correction \mathbf{G} such that $\mathbf{G}\mathbf{C}$ fixes (i.e., commutes with) some Pauli matrix.

Proof (Sketch).

$$\varphi_{\mathbf{C}} : \left\{ \begin{array}{ccc} \mathcal{PHW}_{N} & \stackrel{\phi_{\mathbf{C}}}{\longrightarrow} & \operatorname{Cliff}_{N} & \stackrel{\Phi}{\longrightarrow} & \operatorname{Sp}(2m;2) \\ \mathbf{E} & \longmapsto & \mathbf{CEC}^{\dagger} & \longmapsto & \Phi(\mathbf{CEC}^{\dagger}) \end{array} \right.$$

- ker $\varphi_{\mathbf{C}} \subset \mathcal{PHW}_{N}$ has size 2^{k} for some $k \geq 0$.
- $G := \operatorname{im} \varphi_{\mathbf{C}} \subset \operatorname{Sp}(2m; 2)$, of size 2^{2m-k} , acts on $\mathbb{F}_2^{2m} \setminus \{\mathbf{0}\}$.
- There exists an orbit of size 1.
 - Translation: There exists \widetilde{E} that either commutes or anticommutes with all $CEC^{\dagger}.$
- Conclude the proof by considering the action of $\widetilde{\mathbf{E}}$ on $\mathbf{C}.$

The third level $\mathcal{C}^{(3)}$

Theorem (Support of third level Cliffords).

Let **C** be a unitary matrix from $C^{(3)}$. Then there exists a Clifford **G** such that **GC** is supported on a maximal commutative subgroup of \mathcal{HW}_N .

Proof (Sketch).

- Induct on the number of qubits.
- There exists some Clifford H such that HC commutes with some $E \in \mathcal{HW}_N.$
- Consider S = (E), its normalizer S^{⊥s}, and the resulting [m, m − 1] stabilizer code.
- Apply induction to the logical (m-1)-qubit operation realized by **HC**.

Corollary (The generalized semi-Clifford Conjecture). Every $\mathbf{C} \in \mathcal{C}^{(3)}$ is a generalized semi-Clifford matrix.

Consider a generic sum of Paulis

$$\mathbf{C} = \sum_{\mathbf{E} \in S} \alpha_{\mathbf{E}} \mathbf{E}.$$

Open Problem

- Characterize $\{\alpha_{\mathbf{E}}\}$ for $\mathbf{C} \in \mathcal{C}^{(k)}$.
- What if, additionally, S is MCS?

Conjecture

If S is MCS and $\mathbf{C} \in \mathcal{C}^{(k)}$ then $\{\alpha_{\mathbf{E}}\}\$ are **determined** by the kth order Reed-Muller code.

Future Research (II)

- **Recall:** Hermitian Paulis satisfy $\mathbf{E}^2 = \mathbf{I}_N$ and $\mathbf{E}^{\dagger} = \mathbf{E}$.
- Transvections are square roots of Hermitian Paulis, and they generate Cliff_N.
- Let **U** be a generic unitary such that $\mathbf{U}^2 = \mathbf{I}_N$ and $\mathbf{U}^{\dagger} = \mathbf{U}$.
 - Its square root $(\mathbf{I}_N + i\mathbf{U})/\sqrt{2}$ is again unitary.

Open Problem

Does there exist a set $\mathcal{U} = \{ \mathbf{U} \in \mathbb{U}(N) \mid \mathbf{U}^2 = \mathbf{I}_N \text{ and } \mathbf{U}^{\dagger} = \mathbf{U} \}$ such that the set of square roots

$$\operatorname{Sqrt}(\mathcal{U}) = \{ (\mathbf{I}_N + i\mathbf{U})/\sqrt{2} \mid \mathbf{U} \in \mathcal{U} \}$$

generates $C^{(3)}$?

Conjecture

Let $\mathcal{G} = \{ \mathbf{G} \in \operatorname{Cliff}_{N} | \mathbf{G}^{2} \in \mathcal{HW}_{N} \text{ and } \mathbf{G}^{\dagger} = \mathbf{G} \}$. Then $\operatorname{Sqrt}(\mathcal{G})$ generates $\mathcal{C}^{(3)}$.

THANK YOU!