Binary Subspace Chirps

Tefjol Pllaha

School of Electrical Engineering Aalto University

Universität Zürich November 27, 2019

*Joint with R. Calderbank and O. Tirkkonen

Motivation/Applications

- Machine-type wireless communication.
 - Signature coding.
 - Unsourced random access.
- Compressive Sensing.
 - Construction of deterministic compressive sensing matrices.
 - Fast decoding/reconstruction algorithms.
- Quantum Computing.
 - Clifford Group/Hierarchy.
 - Stabilizer States.
- Coding Theory.
 - Reed-Muller codes.
 - Rank-metric codes.
 - Kerdock codes.
 - Delsarte-Goethals codes.

- Fix $m \in \mathbb{N}$ and $\mathbf{S} \in \operatorname{Sym}(m)$ binary symmetric.
- Put $N = 2^m$. \mathbb{C}^N is indexed with \mathbb{F}_2^m (all vectors, complex or binary, are column vectors).
- Define a unitary matrix $\mathbf{U}_{\mathbf{S}} \in \mathbb{C}^{N \times N}$ as

$$\mathbf{U}_{\mathbf{S}}(\mathbf{a},\mathbf{b}) = \frac{1}{\sqrt{N}} i^{\mathbf{a}^{\mathrm{t}} \mathbf{S}\mathbf{a}+2\mathbf{b}^{\mathrm{t}}\mathbf{a} \mod 4}$$

- A *binary chirp* (BC) is a column **U**_{S,b}.
 - There are $2^m \cdot 2^{m(m+1)/2}$ BCs.
 - If **S** has zero diagonal then $\mathbf{U}_{\mathbf{S},\mathbf{b}} \in \mathbb{R}^{N}$.
 - There are $2^m \cdot 2^{m(m-1)/2}$ real BCs.

Reconstruction Algorithm for BCs¹

Problem: Assume you are given and unknown BC $\mathbf{w} = \mathbf{U}_{\mathbf{S},\mathbf{b}} \in \mathbb{C}^{N}$. How to find \mathbf{S}, \mathbf{b} ? **Solution:** "Shift and multiply" technique¹:

For a shift **e** compute

$$\mathbf{w}_{\mathbf{e}} \coloneqq [\mathbf{w}(\mathbf{a} + \mathbf{e})\overline{\mathbf{w}(\mathbf{a})}]_{\mathbf{a} \in \mathbb{F}_{2}^{m}} \in \mathbb{C}^{N}$$
$$= \frac{1}{N}i^{\mathbf{e}^{t}\mathbf{S}\mathbf{e} + 2\mathbf{b}^{t}\mathbf{e} \mod 4} \cdot [(-1)^{\mathbf{e}^{t}\mathbf{S}\mathbf{a}}]_{\mathbf{a} \in \mathbb{F}_{2}^{m}}.$$

The Walsh-Hadamard transform is

$$\mathbf{H}_{N} = \frac{1}{\sqrt{N}} [(-1)^{\mathbf{b}^{t} \mathbf{a}}]_{\mathbf{a},\mathbf{b}} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}^{\otimes m}$$

¹S. D. Howard, A. R. Calderbank, and S. J. Searle, "A fast reconstruction algorithm for deterministic compressive sensing using second order Reed-Muller codes, 2008 42nd annual conference on information sciences and systems, 2008March, pp. 11–15.

For a basis vector \mathbf{e}_i one has

$$|(\mathbf{H}_{N}\mathbf{w}_{\mathbf{e}_{i}})(\mathbf{a})| = \begin{cases} 1, & \text{if } \mathbf{a} = \mathbf{S}\mathbf{e}_{i}, \\ 0, & \text{else.} \end{cases}$$

- After *m* shifts one recovers **S**.
- To recover **b** one computes

$$[w(a)\overline{U_{\mathsf{S},\mathbf{0}}(a)}]_{\mathbf{a}\in\mathbb{F}_2^m},$$

and then applies H_N .

Reconstruction Algorithm for BCs: Example

• Let
$$m = 3$$
 and consider $\mathbf{S} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \mathbf{0}$.

• Corresponding BC $\mathbf{w} = \mathbf{w}_{\mathbf{S},\mathbf{0}}$ is + + + - + - -.

■ The three shifted version **w**_i, and their Walsh-Hadamard transform are, the rows/columns of **S** are

\mathbf{w}_i	H ₈ w _i	S <i>i</i>
++-+-+	00010000	4 = 011
+ - + + +-	00000100	6 = 101
+ + + +-	00000010	7 = 110

- Minor problems arise if S has equal rows/columns.
- Algorithm works even in presence of noise.

Multiple BC scenario

 Problem: What if you are given a linear combination of multiple BCs

$$\mathbf{w} = \sum_{l=1}^{L} c_l \mathbf{w}_l, c_l \in \mathbb{C},$$

where *L* is small. How to find S_{I}, b_{I} ?

 Compressive sensing prospective: Concatenate all matrices U_S to a long 2^m × 2^m · 2^{m(m+1)/2} matrix Φ. Given

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x},$$

where \mathbf{x} is sparse, how to find \mathbf{x} ?

Binary Subspace Chirps

- Fix a rank $0 \le r \le m$ and $\mathbf{P} \in GL(m)$.
- **P**^{-t} denotes the inverse transpose.
- Define a unitary matrix $\mathbf{U}_{\mathbf{P},\mathbf{S}} \in \mathbb{C}^{N \times N}$ as

$$\mathbf{U}_{\mathbf{P},\mathbf{S}}(\mathbf{a},\mathbf{b}) = \frac{1}{\sqrt{2^r}} i^{(\mathbf{P}^{-1}\mathbf{a})^{\mathrm{t}}\mathbf{S}(\mathbf{P}^{-1}\mathbf{a}) + 2\mathbf{b}^{\mathrm{t}}(\mathbf{P}^{-1}\mathbf{a}) \mod 4} \cdot f(\mathbf{b},\mathbf{P}^{-1}\mathbf{a},r),$$

where

$$f(\mathbf{x},\mathbf{y},r) = \prod_{i=r+1}^m (1+x_i+y_i).$$

- A binary subspace chirp (BSC) is a column **U**_{P,S,b}.
- **Note:** Not all choices of **P**, **S** give different BSCs.

Theorem: A rank *r* BSC is characterized by $H \in \mathcal{G}(m, r)$ and $\mathbf{S}_r \in \text{Sym}(r)$.

■ Write H = cs (H_I) where H_I is in CREF and I is the set of pivots. Then put

$$\mathbf{P} = \mathbf{P}_{H} = \begin{bmatrix} \mathbf{H}_{\mathcal{I}} & \mathbf{I}_{\widetilde{\mathcal{I}}} \end{bmatrix}.$$

• Note: $\mathbf{P}^{-t} = [\mathbf{I}_{\mathcal{I}} \ \widetilde{\mathbf{H}_{\mathcal{I}}}]$, where $(\mathbf{H}_{\mathcal{I}})^{t}\widetilde{\mathbf{H}_{\mathcal{I}}} = 0$.

For $\mathbf{S}_r \in \operatorname{Sym}(r)$ we will denote

$$\widetilde{\mathbf{S}_r} = \begin{bmatrix} \mathbf{S}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & | & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & | & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & | & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & | & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & | & \mathbf{0} & \mathbf{1} \end{bmatrix}, \mathbf{P}^{-t} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & | & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & | & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & | & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & | & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & | & \mathbf{0} & \mathbf{1} \end{bmatrix}$$
$$\widetilde{\mathbf{S}_{3}} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \mathbf{P}^{-t} \widetilde{\mathbf{S}_{3}} \mathbf{P}^{-1} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Example m = 5, r = 1

Figure: Rank 1 Real BCs: 1 Red, -1 Black, 0 Green.

- A rank *r* BSC has 2^{*r*} nonzero entries.
- The nonzero entries are precisely the BCs in the respective dimensions.
- The total number of BSCs is

$$2^{m} \cdot \sum_{r=0}^{m} 2^{r(r+1)/2} \binom{m}{r}_{2} = 2^{m} \cdot \prod_{r=1}^{m} (2^{r}+1).$$

 $\blacksquare |\mathsf{BSC}|/|\mathsf{BC}| \to 2.384...$

Problem: How to recover r, H, S_r for an unknown BSC w?
First recover r and H: H_N[w(a)w(a)]_a ≠ 0 iff

$$\mathbf{a} \in \left\{ \mathbf{I}_{\widetilde{\mathcal{I}}} \mathbf{b}_{m-r} + \mathbf{H}_{\mathcal{I}} \mathbf{x} \mid \mathbf{x} \in \mathbb{F}_2^r \right\}.$$

- To recover rows S_r use "shift and multiply" where instead of shifting with the masis vectors e_i one shifts with columns of H_I.
- The column **b** is recovered exactly as for BCs.
- Complexity $\mathcal{O}(N \log N)$ (same as for BC reconstruction!).

Pauli matrices

$$\mathbf{I}_{2}, \quad \sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \sigma_{y} = i\sigma_{x}\sigma_{z}.$$

m-qubit Pauli group

 $\mathcal{P}_m = \langle e_1 \otimes \cdots \otimes e_m \mid e_i \text{ Pauli matrix} \rangle \subset \mathbb{U}(N).$

- The *m*-qubit *Clifford group* is the normalizer of \mathcal{P}_m in $\mathbb{U}(N)$.
- BSCs are columns of Clifford matrices, also known as stabilizer states.

MRD codes

■ Fix a BC w which is a column of U_S. If v is another BC that runs though the columns of U_{S'}, then

$$|\langle \mathbf{v} | \mathbf{w} \rangle|^2 = \begin{cases} 1/2^{\ell}, & 2^{\ell} \text{ times,} \\ 0, & 2^m - 2^{\ell} \text{ times,} \end{cases}$$

where $\ell = \operatorname{rank} (\mathbf{S} + \mathbf{S'})$.

If $\ell = m$, **v** and **w** are called *mutually unbiased*.

- A vector space of invertible matrices contains at most 2^m matrices.
 - **Corollary:** This can be used show that there exist precisely $2^m + 1$ mutually unbiased bases in 2^m dimensions.
- Sym(m) is a disjoint union of 2^{m(m-1)/2} MRD (of type [2^m, m]) codes.

Thank You!